Search results for: network diagnostic tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10221

Search results for: network diagnostic tool

7131 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin

Authors: Jose Flores, Nadia Gamboa

Abstract:

A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.

Keywords: PCA, HCA, Jequetepeque, multivariate statistical

Procedia PDF Downloads 355
7130 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 81
7129 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
7128 Immunohistochemical Expression of β-catenin and Epidermal Growth Factor Receptor in Adamantinomatous Craniopharyngioma

Authors: Ghada Esheba, Fatimah Alturkistani, Arwa Obaid, Ahdab Bashehab, Moayad Alturkistani

Abstract:

Introduction: Craniopharyngiomas (CPs) are rare epithelial tumors located mainly in the sellar/parasellar region. CPs have been classified histopathologically, genetically, clinically and prognostically into two distinctive subtypes: adamantinomatous and papillary variants. Aim: To examine the pattern of expression of both the β-catenin and epidermal growth factor receptor (EGFR) in surgically resected samples of adamantinomatous CP, and to asses for the possibility of using anti-EGFR in the management of ACP patients. Materials and methods: β-catenin and EGFR immunostaining was performed on paraffin-embedded tissue sections of 18 ACP cases. Result: 17 out of 18 cases (94%) of ACP exhibited strong nuclear/cytoplasmic expression of β-catenin, 15 (83%) of APC cases were positive for EGFR. Conclusion: Nuclear accumulation of β-catenin is a diagnostic hallmark of ACP. EGFR positivity in most cases of ACP could qualify the use of anti-EGFR therapy. 

Keywords: craniopharyngioma, adamantinomatous, papillary, epidermal growth factor receptor, B-catenin

Procedia PDF Downloads 226
7127 Urban Energy Demand Modelling: Spatial Analysis Approach

Authors: Hung-Chu Chen, Han Qi, Bauke de Vries

Abstract:

Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.

Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics

Procedia PDF Downloads 148
7126 A Development of Producing eBooks Competency of Teachers in Chachengsao, Thailand

Authors: Boonrat Plangsorn

Abstract:

Using ebooks can make not only a meaningful learning and achievement for students, but also can help teacher effectively enhance and improve their teaching. Nowadays, teachers try to develop ebooks for their class but it does not success in some cases because they do not have clear understanding on how to design, develop, and using ebooks that align with their teaching and learning objectives. Thus, the processes of using, designing, and producing ebooks have become one of important competency for teacher because it will enhance teacher’s knowledge for ebooks production. The purposes of this research were: (1) to develop the competency of producing and using ebooks of teachers in Chachengsao and (2) to promote the using ebooks of teachers in Chachengsao. The research procedures were divided into four phases. Phase I (study components and process of the designing and development of ebooks) was an interview in which the qualitative data were collected from five experts in instructional media. Phase II (develop teachers’ competency of producing ebooks) was a workshop for 28 teachers in Chachengsao. Phase III (study teachers’ using ebooks) was an interview in which the qualitative data were collected from seven teachers. Phase IV (study teachers’ using ebooks) was an interview in which the qualitative data were collected from six teachers. The research findings were as follows: 1. The components of ebooks comprised three components: ebooks structure, multimedia, and hyperlink. The eleven processes of design ebooks for education included (1) analyze the ebooks objective, (2) analyze learner characteristics, (3) set objective, (4) set learning content, (5) learner’s motivation, (6) design and construct activity, (7) design hyperlink, (8) produce script and storyboard, (9) confirm storyboard by expert, (10) develop ebooks, and (11) evaluate ebooks. 2. The evaluation of designing and development of ebooks for teacher workshop revealed the participants’ highest satisfaction (M = 4.65). 3. The teachers’ application of ebooks were found that obstacles of producing an ebooks: Time period of producing ebooks, a readiness of school resources, and small teacher network of producing and using ebooks. The result of using ebooks was students’ motivation. 4. The teachers’ ebooks utilization through educational research network of teacher in Chachengsao revealed that the characteristic of ebooks consist of picture, multimedia, voice, music, video, and hyperlink. The application of ebooks caused students interested in the contents; enjoy learning, and enthusiastic learning.

Keywords: ebooks, producing ebooks competency, using ebooks competency, educational research network

Procedia PDF Downloads 354
7125 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities

Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb

Abstract:

Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.

Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network

Procedia PDF Downloads 61
7124 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 161
7123 Smart Demand Response: A South African Pragmatic, Non-Destructive and Alternative Advanced Metering Infrastructure-Based Maximum Demand Reduction Methodology

Authors: Christo Nicholls

Abstract:

The National Electricity Grid (NEG) in South Africa has been under strain for the last five years. This overburden of the NEG led Eskom (the State-Owned Entity responsible for the NEG) to implement a blunt methodology to assist them in reducing the maximum demand (MD) on the NEG, when required, called Loadshedding. The challenge of this methodology is that not only does it lead to immense technical issues with the distribution network equipment, e.g., transformers, due to the frequent abrupt off and on switching, it also has a broader negative fiscal impact on the distributors, as their key consumers (commercial & industrial) are now grid defecting due to the lack of Electricity Security Provision (ESP). This paper provides a pragmatic alternative methodology utilizing specific functionalities embedded within direct-connect single and three-phase Advanced Meter Infrastructure (AMI) Solutions deployed within the distribution network, in conjunction with a Multi-Agent Systems Based AI implementation focused on Automated Negotiation Peer-2-Peer trading. The results of this research clearly illustrate, not only does methodology provide a factual percentage contribution towards the NEG MD at the point of consideration, it also allows the distributor to leverage the real-time MD data from key consumers to activate complex, yet impact-measurable Demand Response (DR) programs.

Keywords: AI, AMI, demand response, multi-agent

Procedia PDF Downloads 112
7122 Analyzing Strategic Alliances of Museums: The Case of Girona (Spain)

Authors: Raquel Camprubí

Abstract:

Cultural tourism has been postulated as relevant motivation for tourist over the world during the last decades. In this context, museums are the main attraction for cultural tourists who are seeking to connect with the history and culture of the visited place. From the point of view of an urban destination, museums and other cultural resources are essential to have a strong tourist supply at the destination, in order to be capable of catching attention and interest of cultural tourists. In particular, museums’ challenge is to be prepared to offer the best experience to their visitors without to forget their mission-based mainly on protection of its collection and other social goals. Thus, museums individually want to be competitive and have good positioning to achieve their strategic goals. The life cycle of the destination and the level of maturity of its tourism product influence the need of tourism agents to cooperate and collaborate among them, in order to rejuvenate their product and become more competitive as a destination. Additionally, prior studies have considered an approach of different models of a public and private partnership, and collaborative and cooperative relations developed among the agents of a tourism destination. However, there are no studies that pay special attention to museums and the strategic alliances developed to obtain mutual benefits. Considering this background, the purpose of this study is to analyze in what extent museums of a given urban destination have established strategic links and relations among them, in order to improve their competitive position at both individual and destination level. In order to achieve the aim of this study, the city of Girona (Spain) and the museums located in this city are taken as a case study. Data collection was conducted using in-depth interviews, in order to collect all the qualitative data related to nature, strengthen and purpose of the relational ties established among the museums of the city or other relevant tourism agents of the city. To conduct data analysis, a Social Network Analysis (SNA) approach was taken using UCINET software. Position of the agents in the network and structure of the network was analyzed, and qualitative data from interviews were used to interpret SNA results. Finding reveals the existence of strong ties among some of the museums of the city, particularly to create and promote joint products. Nevertheless, there were detected outsiders who have an individual strategy, without collaboration and cooperation with other museums or agents of the city. Results also show that some relational ties have an institutional origin, while others are the result of a long process of cooperation with common projects. Conclusions put in evidence that collaboration and cooperation of museums had been positive to increase the attractiveness of the museum and the city as a cultural destination. Future research and managerial implications are also mentioned.

Keywords: cultural tourism, competitiveness, museums, Social Network analysis

Procedia PDF Downloads 117
7121 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research

Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová

Abstract:

Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.

Keywords: special elementary school, a mobile touch device, iPad, attention, Math Board

Procedia PDF Downloads 254
7120 Wear Particle Analysis from used Gear Lubricants for Maintenance Diagnostics

Authors: Surapol Raadnui

Abstract:

This particular work describes an experimental investigation on gear wear in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back to back spur gear test rig and a grease lubricated worm gear rig were used. The tests samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs were assessed with utilization of statistical design of experiment. It can be deduced that wear debris characteristics from both cases exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss.

Keywords: predictive maintenance, worm gear, spur gear, wear debris analysis, problem diagnostic

Procedia PDF Downloads 153
7119 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model

Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki

Abstract:

As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.

Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China

Procedia PDF Downloads 288
7118 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors

Procedia PDF Downloads 237
7117 Development and Verification of the Idom Shielding Optimization Tool

Authors: Omar Bouhassoun, Cristian Garrido, César Hueso

Abstract:

The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.

Keywords: optimization, shielding, nuclear, genetic algorithm

Procedia PDF Downloads 110
7116 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy

Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces

Procedia PDF Downloads 276
7115 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 120
7114 Epidemiology of Healthcare-Associated Infections among Hematology/Oncology Patients: Results of a Prospective Incidence Survey in a Tunisian University Hospital

Authors: Ezzi Olfa, Bouafia Nabiha, Ammar Asma, Ben Cheikh Asma, Mahjoub Mohamed, Bannour Wadiaa, Achour Bechir, Khelif Abderrahim, Njah Mansour

Abstract:

Background: In hematology/oncology, health care improvement has allowed increasingly aggressive management in diagnostic and therapeutic procedures. Nevertheless, these intensified procedures have been associated with higher risk of healthcare associated infections (HAIs). We undertook this study to estimate the burden of HAIs in the cancer patients in an onco -hematology unit in a Tunisian university hospital. Materials/Methods: A prospective, observational study, based on active surveillance for a period of 06 months from Mars through September 2016, was undertaken in the department of onco-hematology in a university hospital in Tunisia. Patients, who stayed in the unit for ≥ 48 h, were followed until hospital discharge. The Centers for Disease Control and Prevention criteria (CDC) for site-specific infections were used as standard definitions for HAIs. Results: One hundred fifty patients were included in the study. The gender distribution was 33.3% for girls and 66.6% boys. They have a mean age of 23.12 years (SD = 18.36 years). The main patient’s diagnosis is: Acute Lymphoblastic Leukemia (ALL): 48.7 %( n=73). The mean length of stay was 21 days +/- 18 days. Almost 8% of patients had an implantable port (n= 12), 34.9 % (n=52) had a lumber puncture and 42.7 % (n= 64) had a medullary puncture. Chemotherapy was instituted in 88% of patients (n=132). Eighty (53.3%) patients had neutropenia at admission. The incidence rate of HAIs was 32.66 % per patient; the incidence density was 15.73 per 1000 patient-days in the unit. Mortality rate was 9.3% (n= 14), and 50% of cases of death were caused by HAIs. The most frequent episodes of infection were: infection of skin and superficial mucosa (5.3%), pulmonary aspergillosis (4.6%), Healthcare associated pneumonia (HAP) (4%), Central venous catheter associated infection (4%), digestive infection (5%), and primary bloodstream infection (2.6%). Finally, fever of unknown origin (FUO) incidence rate was 14%. In case of skin and superficial infection (n= 8), 4 episodes were documented, and organisms implicated were Escherichia.coli, Geotricum capitatum and Proteus mirabilis. For pulmonary aspergillosis, 6 cases were diagnosed clinically and radiologically, and one was proved by positive aspergillus antigen in bronchial aspiration. Only one patient died due this infection. In HAP (6 cases), four episodes were diagnosed clinically and radiologically. No bacterial etiology was established in these cases. Two patients died due to HAP. For primary bloodstream infection (4 cases), implicated germs were Enterobacter cloacae, Geotricum capitatum, klebsiella pneumoniae, and Streptococcus pneumoniae. Conclusion: This type of prospective study is an indispensable tool for internal quality control. It is necessary to evaluate preventive measures and design control guides and strategies aimed to reduce the HAI’s rate and the morbidity and mortality associated with infection in a hematology/oncology unit.

Keywords: cohort prospective studies, healthcare associated infections, hematology oncology department, incidence

Procedia PDF Downloads 390
7113 Chemical and Biomolecular Detection at a Polarizable Electrical Interface

Authors: Nicholas Mavrogiannis, Francesca Crivellari, Zachary Gagnon

Abstract:

Development of low-cost, rapid, sensitive and portable biosensing systems are important for the detection and prevention of disease in developing countries, biowarfare/antiterrorism applications, environmental monitoring, point-of-care diagnostic testing and for basic biological research. Currently, the most established commercially available and widespread assays for portable point of care detection and disease testing are paper-based dipstick and lateral flow test strips. These paper-based devices are often small, cheap and simple to operate. The last three decades in particular have seen an emergence in these assays in diagnostic settings for detection of pregnancy, HIV/AIDS, blood glucose, Influenza, urinary protein, cardiovascular disease, respiratory infections and blood chemistries. Such assays are widely available largely because they are inexpensive, lightweight, and portable, are simple to operate, and a few platforms are capable of multiplexed detection for a small number of sample targets. However, there is a critical need for sensitive, quantitative and multiplexed detection capabilities for point-of-care diagnostics and for the detection and prevention of disease in the developing world that cannot be satisfied by current state-of-the-art paper-based assays. For example, applications including the detection of cardiac and cancer biomarkers and biothreat applications require sensitive multiplexed detection of analytes in the nM and pM range, and cannot currently be satisfied with current inexpensive portable platforms due to their lack of sensitivity, quantitative capabilities and often unreliable performance. In this talk, inexpensive label-free biomolecular detection at liquid interfaces using a newly discovered electrokinetic phenomenon known as fluidic dielectrophoresis (fDEP) is demonstrated. The electrokinetic approach involves exploiting the electrical mismatches between two aqueous liquid streams forced to flow side-by-side in a microfluidic T-channel. In this system, one fluid stream is engineered to have a higher conductivity relative to its neighbor which has a higher permittivity. When a “low” frequency (< 1 MHz) alternating current (AC) electrical field is applied normal to this fluidic electrical interface the fluid stream with high conductivity displaces into the low conductive stream. Conversely, when a “high” frequency (20MHz) AC electric field is applied, the high permittivity stream deflects across the microfluidic channel. There is, however, a critical frequency sensitive to the electrical differences between each fluid phase – the fDEP crossover frequency – between these two events where no fluid deflection is observed, and the interface remains fixed when exposed to an external field. To perform biomolecular detection, two streams flow side-by-side in a microfluidic T-channel: one fluid stream with an analyte of choice and an adjacent stream with a specific receptor to the chosen target. The two fluid streams merge and the fDEP crossover frequency is measured at different axial positions down the resulting liquid

Keywords: biodetection, fluidic dielectrophoresis, interfacial polarization, liquid interface

Procedia PDF Downloads 446
7112 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
7111 The Phenomenon of Suicide in the Social Consciousness: Recommendations for the Educational Strategy of the Society and Prevention of Suicide

Authors: Aldona Anna Osajda

Abstract:

Suicide is a phenomenon that worries both the public and scientists in various fields. In society, suicide is a taboo subject, and in addition, there are many myths and stereotypes that are detrimental to the proper understanding and appropriate response of a person at risk of suicide. It is necessary to educate society and the suicide prevention system for various age groups. The research covers the level of knowledge and views of Polish society, including teachers and youth, regarding suicides. The main research problem is to establish the level of awareness of Polish society about the phenomenon of suicides. The study will be based on the diagnostic survey method, using the survey technique. Information about the research will be disseminated electronically on the Internet via social messaging. The collected data will be analyzed using appropriate statistics. On the basis of the obtained results, answers will be given to research questions, which will become the basis for designing an appropriate educational strategy for the society in the field of suicide and developing recommendations and recommendations for teachers to conduct classes in the field of suicide prevention for children and adolescents.

Keywords: phenomenon of suicides, suicide, suicide prevention, suicidology

Procedia PDF Downloads 191
7110 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China

Authors: Xiping Wang,Shuran Yao, Liqin Dai

Abstract:

Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.

Keywords: bayesian networks, climatic change, freezing Injury, winter wheat

Procedia PDF Downloads 408
7109 Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles

Authors: M. Dinesh, V. Kenny Mark, Dharni Vasudhevan Venkatesan, B. Santhosh Kumar, R. Sree Radesh, V. R. Sanal Kumar

Abstract:

Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies, NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft.

Keywords: aerodynamic efficiency, cant angle, drag reduction, flexible winglets

Procedia PDF Downloads 523
7108 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network

Authors: T. Lydon, A. McNabola, P. Coughlan

Abstract:

Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.

Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network

Procedia PDF Downloads 260
7107 Predicting Suicidal Behavior by an Accurate Monitoring of RNA Editing Biomarkers in Blood Samples

Authors: Berengere Vire, Nicolas Salvetat, Yoann Lannay, Guillaume Marcellin, Siem Van Der Laan, Franck Molina, Dinah Weissmann

Abstract:

Predicting suicidal behaviors is one of the most complex challenges of daily psychiatric practices. Today, suicide risk prediction using biological tools is not validated and is only based on subjective clinical reports of the at-risk individual. Therefore, there is a great need to identify biomarkers that would allow early identification of individuals at risk of suicide. Alterations of adenosine-to-inosine (A-to-I) RNA editing of neurotransmitter receptors and other proteins have been shown to be involved in etiology of different psychiatric disorders and linked to suicidal behavior. RNA editing is a co- or post-transcriptional process leading to a site-specific alteration in RNA sequences. It plays an important role in the epi transcriptomic regulation of RNA metabolism. On postmortem human brain tissue (prefrontal cortex) of depressed suicide victims, Alcediag found specific alterations of RNA editing activity on the mRNA coding for the serotonin 2C receptor (5-HT2cR). Additionally, an increase in expression levels of ADARs, the RNA editing enzymes, and modifications of RNA editing profiles of prime targets, such as phosphodiesterase 8A (PDE8A) mRNA, have also been observed. Interestingly, the PDE8A gene is located on chromosome 15q25.3, a genomic region that has recurrently been associated with the early-onset major depressive disorder (MDD). In the current study, we examined whether modifications in RNA editing profile of prime targets allow identifying disease-relevant blood biomarkers and evaluating suicide risk in patients. To address this question, we performed a clinical study to identify an RNA editing signature in blood of depressed patients with and without the history of suicide attempts. Patient’s samples were drawn in PAXgene tubes and analyzed on Alcediag’s proprietary RNA editing platform using next generation sequencing technology. In addition, gene expression analysis by quantitative PCR was performed. We generated a multivariate algorithm comprising various selected biomarkers to detect patients with a high risk to attempt suicide. We evaluated the diagnostic performance using the relative proportion of PDE8A mRNA editing at different sites and/or isoforms as well as the expression of PDE8A and the ADARs. The significance of these biomarkers for suicidality was evaluated using the area under the receiver-operating characteristic curve (AUC). The generated algorithm comprising the biomarkers was found to have strong diagnostic performances with high specificity and sensitivity. In conclusion, we developed tools to measure disease-specific biomarkers in blood samples of patients for identifying individuals at the greatest risk for future suicide attempts. This technology not only fosters patient management but is also suitable to predict the risk of drug-induced psychiatric side effects such as iatrogenic increase of suicidal ideas/behaviors.

Keywords: blood biomarker, next-generation-sequencing, RNA editing, suicide

Procedia PDF Downloads 259
7106 An Ethnographic Study on Peer Support Work-Ers in a Peer Driven Non Governmental Organization: The Colorado Mental Wellness Network

Authors: Shawna M. Margesson

Abstract:

This research study seeks to explore the lived experience of peer support workers (PSWs) in a peer-led non-governmental organization in Denver, Colorado, USA. The Colorado Mental Wellness Network offers supportive wellness recovery services such as wellness recovery action plans (WRAP), advocacy trainings for anti-stigma campaigns, and PSWs to work with and for consumers in the community. This study suggests that a peer-run environment is a unique community setting for PSWs to work given all employees are living in mental wellness recovery. Little has been documented about PSWs' personal accounts of working within a recovery-oriented organization and their first-person accounts to working with consumers. The importance of this study is to provide an ethnographic account of both subjects; the lived experiences of PSWs of both organizational and consumer-driven recovery. This study seeks to add to the literature and the social work profession the personal accounts of PSWs as they provide services to others like themselves. It also will provide an additional lens to view the peer-driven movement in mental health and wellness recovery.

Keywords: peer to peer movement, mental health, ethnography, peer support workers

Procedia PDF Downloads 164
7105 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 121
7104 Research on Road Openness in the Old Urban Residential District Based on Space Syntax: A Case Study on Kunming within the First Loop Road

Authors: Haoyang Liang, Dandong Ge

Abstract:

With the rapid development of Chinese cities, traffic congestion has become more and more serious. At the same time, there are many closed old residential area in Chinese cities, which seriously affect the connectivity of urban roads and reduce the density of urban road networks. After reopening the restricted old residential area, the internal roads in the original residential area were transformed into urban roads, which was of great help to alleviate traffic congestion. This paper uses the spatial syntactic theory to analyze the urban road network and compares the roads with the integration and connectivity degree to evaluate whether the opening of the roads in the residential areas can improve the urban traffic. Based on the road network system within the first loop road in Kunming, the Space Syntax evaluation model is established for status analysis. And comparative analysis method will be used to compare the change of the model before and after the road openness of the old urban residential district within the first-ring road in Kunming. Then it will pick out the areas which indicate a significant difference for the small dimensions model analysis. According to the analyzed results and traffic situation, the evaluation of road openness in the old urban residential district will be proposed to improve the urban residential districts.

Keywords: Space Syntax, Kunming, urban renovation, traffic jam

Procedia PDF Downloads 162
7103 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 242
7102 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy

Authors: Mehtab Alam

Abstract:

Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.

Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy

Procedia PDF Downloads 124