Search results for: teaching innovative health care delivery method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31171

Search results for: teaching innovative health care delivery method

541 Zinc Oxide Varistor Performance: A 3D Network Model

Authors: Benjamin Kaufmann, Michael Hofstätter, Nadine Raidl, Peter Supancic

Abstract:

ZnO varistors are the leading overvoltage protection elements in today’s electronic industry. Their highly non-linear current-voltage characteristics, very fast response times, good reliability and attractive cost of production are unique in this field. There are challenges and questions unsolved. Especially, the urge to create even smaller, versatile and reliable parts, that fit industry’s demands, brings manufacturers to the limits of their abilities. Although, the varistor effect of sintered ZnO is known since the 1960’s, and a lot of work was done on this field to explain the sudden exponential increase of conductivity, the strict dependency on sinter parameters, as well as the influence of the complex microstructure, is not sufficiently understood. For further enhancement and down-scaling of varistors, a better understanding of the microscopic processes is needed. This work attempts a microscopic approach to investigate ZnO varistor performance. In order to cope with the polycrystalline varistor ceramic and in order to account for all possible current paths through the material, a preferably realistic model of the microstructure was set up in the form of three-dimensional networks where every grain has a constant electric potential, and voltage drop occurs only at the grain boundaries. The electro-thermal workload, depending on different grain size distributions, was investigated as well as the influence of the metal-semiconductor contact between the electrodes and the ZnO grains. A number of experimental methods are used, firstly, to feed the simulations with realistic parameters and, secondly, to verify the obtained results. These methods are: a micro 4-point probes method system (M4PPS) to investigate the current-voltage characteristics between single ZnO grains and between ZnO grains and the metal electrode inside the varistor, micro lock-in infrared thermography (MLIRT) to detect current paths, electron back scattering diffraction and piezoresponse force microscopy to determine grain orientations, atom probe to determine atomic substituents, Kelvin probe force microscopy for investigating grain surface potentials. The simulations showed that, within a critical voltage range, the current flow is localized along paths which represent only a tiny part of the available volume. This effect could be observed via MLIRT. Furthermore, the simulations exhibit that the electric power density, which is inversely proportional to the number of active current paths, since this number determines the electrical active volume, is dependent on the grain size distribution. M4PPS measurements showed that the electrode-grain contacts behave like Schottky diodes and are crucial for asymmetric current path development. Furthermore, evaluation of actual data suggests that current flow is influenced by grain orientations. The present results deepen the knowledge of influencing microscopic factors on ZnO varistor performance and can give some recommendations on fabrication for obtaining more reliable ZnO varistors.

Keywords: metal-semiconductor contact, Schottky diode, varistor, zinc oxide

Procedia PDF Downloads 260
540 Electrochemical Activity of NiCo-GDC Cermet Anode for Solid Oxide Fuel Cells Operated in Methane

Authors: Kamolvara Sirisuksakulchai, Soamwadee Chaianansutcharit, Kazunori Sato

Abstract:

Solid Oxide Fuel Cells (SOFCs) have been considered as one of the most efficient large unit power generators for household and industrial applications. The efficiency of an electronic cell depends mainly on the electrochemical reactions in the anode. The development of anode materials has been intensely studied to achieve higher kinetic rates of redox reactions and lower internal resistance. Recent studies have introduced an efficient cermet (ceramic-metallic) material for its ability in fuel oxidation and oxide conduction. This could expand the reactive site, also known as the triple-phase boundary (TPB), thus increasing the overall performance. In this study, a bimetallic catalyst Ni₀.₇₅Co₀.₂₅Oₓ was combined with Gd₀.₁Ce₀.₉O₁.₉₅ (GDC) to be used as a cermet anode (NiCo-GDC) for an anode-supported type SOFC. The synthesis of Ni₀.₇₅Co₀.₂₅Oₓ was carried out by ball milling NiO and Co3O4 powders in ethanol and calcined at 1000 °C. The Gd₀.₁Ce₀.₉O₁.₉₅ was prepared by a urea co-precipitation method. Precursors of Gd(NO₃)₃·6H₂O and Ce(NO₃)₃·6H₂O were dissolved in distilled water with the addition of urea and were heated subsequently. The heated mixture product was filtered and rinsed thoroughly, then dried and calcined at 800 °C and 1500 °C, respectively. The two powders were combined followed by pelletization and sintering at 1100 °C to form an anode support layer. The fabrications of an electrolyte layer and cathode layer were conducted. The electrochemical performance in H₂ was measured from 800 °C to 600 °C while for CH₄ was from 750 °C to 600 °C. The maximum power density at 750 °C in H₂ was 13% higher than in CH₄. The difference in performance was due to higher polarization resistances confirmed by the impedance spectra. According to the standard enthalpy, the dissociation energy of C-H bonds in CH₄ is slightly higher than the H-H bond H₂. The dissociation of CH₄ could be the cause of resistance within the anode material. The results from lower temperatures showed a descending trend of power density in relevance to the increased polarization resistance. This was due to lowering conductivity when the temperature decreases. The long-term stability was measured at 750 °C in CH₄ monitoring at 12-hour intervals. The maximum power density tends to increase gradually with time while the resistances were maintained. This suggests the enhanced stability from charge transfer activities in doped ceria due to the transition of Ce⁴⁺ ↔ Ce³⁺ at low oxygen partial pressure and high-temperature atmosphere. However, the power density started to drop after 60 h, and the cell potential also dropped from 0.3249 V to 0.2850 V. These phenomena was confirmed by a shifted impedance spectra indicating a higher ohmic resistance. The observation by FESEM and EDX-mapping suggests the degradation due to mass transport of ions in the electrolyte while the anode microstructure was still maintained. In summary, the electrochemical test and stability test for 60 h was achieved by NiCo-GDC cermet anode. Coke deposition was not detected after operation in CH₄, hence this confirms the superior properties of the bimetallic cermet anode over typical Ni-GDC.

Keywords: bimetallic catalyst, ceria-based SOFCs, methane oxidation, solid oxide fuel cell

Procedia PDF Downloads 127
539 The Renewed Constitutional Roots of Agricultural Law in Hungary in Line with Sustainability

Authors: Gergely Horvath

Abstract:

The study analyzes the special provisions of the highest level of national agricultural legislation in the Fundamental Law of Hungary (25 April 2011) with descriptive, analytic and comparative methods. The agriculturally relevant articles of the constitution are very important, because –in spite of their high level of abstraction– they can determine and serve the practice comprehensively and effectively. That is why the objective of the research is to interpret the concrete sentences and phrases in connection with agriculture compared with the methods of some other relevant constitutions (historical-grammatical interpretation). The major findings of the study focus on searching for the appropriate provisions and approach capable of solving the problems of sustainable food production. The real challenge agricultural law must face with in the future is protecting or conserving its background and subjects: the environment, the ecosystem services and all the 'roots' of food production. In effect, agricultural law is the legal aspect of the production of 'our daily bread' from farm to table. However, it also must guarantee the safe daily food for our children and for all our descendants. In connection with sustainability, this unique, value-oriented constitution of an agrarian country even deals with uncustomary questions in this level of legislation like GMOs (by banning the production of genetically modified crops). The starting point is that the principle of public good (principium boni communis) must be the leading notion of the norm, which is an idea partly outside the law. The public interest is reflected by the agricultural law mainly in the concept of public health (in connection with food security) and the security of supply with healthy food. The construed Article P claims the general protection of our natural resources as a requirement. The enumeration of the specific natural resources 'which all form part of the common national heritage' also means the conservation of the grounds of sustainable agriculture. The reference of the arable land represents the subfield of law of the protection of land (and soil conservation), that of the water resources represents the subfield of water protection, the reference of forests and the biological diversity visualize the specialty of nature conservation, which is an essential support for agrobiodiversity. The mentioned protected objects constituting the nation's common heritage metonymically melt with their protective regimes, strengthening them and forming constitutional references of law. This regimes also mean the protection of the natural foundations of the life of the living and also the future generations, in the name of intra- and intergenerational equity.

Keywords: agricultural law, constitutional values, natural resources, sustainability

Procedia PDF Downloads 140
538 Plastic Pollution: Analysis of the Current Legal Framework and Perspectives on Future Governance

Authors: Giorgia Carratta

Abstract:

Since the beginning of mass production, plastic items have been crucial in our daily lives. Thanks to their physical and chemical properties, plastic materials have proven almost irreplaceable in a number of economic sectors such as packaging, automotive, building and construction, textile, and many others. At the same time, the disruptive consequences of plastic pollution have been progressively brought to light in all environmental compartments. The overaccumulation of plastics in the environment, and its adverse effects on habitats, wildlife, and (most likely) human health, represents a call for action to decision-makers around the globe. From a regulatory perspective, plastic production is an unprecedented challenge at all levels of governance. At the international level, the design of new legal instruments, the amendment of existing ones, and the coordination among the several relevant policy areas requires considerable effort. Under the pressure of both increasing scientific evidence and a concerned public opinion, countries seem to slowly move towards the discussion of a new international ‘plastic treaty.’ However, whether, how, and with which scopes such instrument would be adopted is still to be seen. Additionally, governments are establishing regional-basedstrategies, prone to consider the specificities of the plastic issue in a certain geographical area. Thanks to the new Circular Economy Action Plan, approved in March 2020 by the European Commission, EU countries are slowly but steadily shifting to a carbon neutral, circular economy in the attempt to reduce the pressure on natural resources and, parallelly, facilitate sustainable economic growth. In this context, the EU Plastic Strategy is promising to change the way plastic is designed, produced, used, and treated after consumption. In fact, only in the EU27 Member States, almost 26 million tons of plastic waste are generated herein every year, whose 24,9% is still destined to landfill. Positive effects of the Strategy also include a more effective protection of our environment, especially the marine one, the reduction of greenhouse gas emissions, a reduced need for imported fossil energy sources, more sustainable production and consumption patterns. As promising as it may sound, the road ahead is still long. The need to implement these measures in domestic legislations makes their outcome difficult to predict at the moment. An analysis of the current international and European Union legal framework on plastic pollution, binding, and voluntary instruments included, could serve to detect ‘blind spots’ in the current governance as well as to facilitate the development of policy interventions along the plastic value chain, where it appears more needed.

Keywords: environmental law, European union, governance, plastic pollution, sustainability

Procedia PDF Downloads 88
537 Interdisciplinary Evaluations of Children with Autism Spectrum Disorder in a Telehealth Arena

Authors: Janice Keener, Christine Houlihan

Abstract:

Over the last several years, there has been an increase in children identified as having Autism Spectrum Disorder (ASD). Specialists across several disciplines: mental health and medical professionals have been tasked with ensuring accurate and timely evaluations for children with suspected ASD. Due to the nature of the ASD symptom presentation, an interdisciplinary assessment and treatment approach best addresses the needs of the whole child. During the unprecedented COVID-19 Pandemic, clinicians were faced with how to continue with interdisciplinary assessments in a telehealth arena. Instruments that were previously used to assess ASD in-person were no longer appropriate measures to use due to the safety restrictions. For example, The Autism Diagnostic Observation Schedule requires examiners and children to be in very close proximity of each other and if masks or face shields are worn, they render the evaluation invalid. Similar issues arose with the various cognitive measures that are used to assess children such as the Weschler Tests of Intelligence and the Differential Ability Scale. Thus the need arose to identify measures that are able to be safely and accurately administered using safety guidelines. The incidence of ASD continues to rise over time. Currently, the Center for Disease Control estimates that 1 in 59 children meet the criteria for a diagnosis of ASD. The reasons for this increase are likely multifold, including changes in diagnostic criteria, public awareness of the condition, and other environmental and genetic factors. The rise in the incidence of ASD has led to a greater need for diagnostic and treatment services across the United States. The uncertainty of the diagnostic process can lead to an increased level of stress for families of children with suspected ASD. Along with this increase, there is a need for diagnostic clarity to avoid both under and over-identification of this condition. Interdisciplinary assessment is ideal for children with suspected ASD, as it allows for an assessment of the whole child over the course of time and across multiple settings. Clinicians such as Psychologists and Developmental Pediatricians play important roles in the initial evaluation of autism spectrum disorder. An ASD assessment may consist of several types of measures such as standardized checklists, structured interviews, and direct assessments such as the ADOS-2 are just a few examples. With the advent of telehealth clinicians were asked to continue to provide meaningful interdisciplinary assessments via an electronic platform and, in a sense, going to the family home and evaluating the clinical symptom presentation remotely and confidently making an accurate diagnosis. This poster presentation will review the benefits, limitations, and interpretation of these various instruments. The role of other medical professionals will also be addressed, including medical providers, speech pathology, and occupational therapy.

Keywords: Autism Spectrum Disorder Assessments, Interdisciplinary Evaluations , Tele-Assessment with Autism Spectrum Disorder, Diagnosis of Autism Spectrum Disorder

Procedia PDF Downloads 184
536 A Meta-Analysis of School-Based Suicide Prevention for Adolescents and Meta-Regressions of Contextual and Intervention Factors

Authors: E. H. Walsh, J. McMahon, M. P. Herring

Abstract:

Post-primary school-based suicide prevention (PSSP) is a valuable avenue to reduce suicidal behaviours in adolescents. The aims of this meta-analysis and meta-regression were 1) to quantify the effect of PSSP interventions on adolescent suicide ideation (SI) and suicide attempts (SA), and 2) to explore how intervention effects may vary based on important contextual and intervention factors. This study provides further support to the benefits of PSSP by demonstrating lower suicide outcomes in over 30,000 adolescents following PSSP and mental health interventions and tentatively suggests that intervention effectiveness may potentially vary based on intervention factors. The protocol for this study is registered on PROSPERO (ID=CRD42020168883). Population, intervention, comparison, outcomes, and study design (PICOs) defined eligible studies as cluster randomised studies (n=12) containing PSSP and measuring suicide outcomes. Aggregate electronic database EBSCO host, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched. Cochrane bias tools for cluster randomised studies demonstrated that half of the studies were rated as low risk of bias. The Egger’s Regression Test adapted for multi-level modelling indicated that publication bias was not an issue (all ps > .05). Crude and corresponding adjusted pooled log odds ratios (OR) were computed using the Metafor package in R, yielding 12 SA and 19 SI effects. Multi-level random-effects models accounting for dependencies of effects from the same study revealed that in crude models, compared to controls, interventions were significantly associated with 13% (OR=0.87, 95% confidence interval (CI), [0.78,0.96], Q18 =15.41, p=0.63) and 34% (OR=0.66, 95%CI [0.47,0.91], Q10=16.31, p=0.13) lower odds of SI and SA, respectively. Adjusted models showed similar odds reductions of 15% (OR=0.85, 95%CI[0.75,0.95], Q18=10.04, p=0.93) and 28% (OR=0.72, 95%CI[0.59,0.87], Q10=10.46, p=0.49) for SI and SA, respectively. Within-cluster heterogeneity ranged from no heterogeneity to low heterogeneity for SA across crude and adjusted models (0-9%). No heterogeneity was identified for SI across crude and adjusted models (0%). Pre-specified univariate moderator analyses were not significant for SA (all ps < 0.05). Variations in average pooled SA odds reductions across categories of various intervention characteristics were observed (all ps < 0.05), which preliminarily suggests that the effectiveness of interventions may potentially vary across intervention factors. These findings have practical implications for researchers, clinicians, educators, and decision-makers. Further investigation of important logical, theoretical, and empirical moderators on PSSP intervention effectiveness is recommended to establish how and when PSSP interventions best reduce adolescent suicidal behaviour.

Keywords: adolescents, contextual factors, post-primary school-based suicide prevention, suicide ideation, suicide attempts

Procedia PDF Downloads 82
535 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp

Authors: Lalit Ahuja, Nancy Das, Yashas Shetty

Abstract:

LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.

Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module

Procedia PDF Downloads 41
534 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis

Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry

Procedia PDF Downloads 62
533 Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis

Authors: G. V. Manzane, S. J. Modise

Abstract:

Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies.

Keywords: uterine fibroids, african medicinal plants, bioactive compounds, identify and characterized

Procedia PDF Downloads 67
532 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia

Authors: Hanna Mamo Ergando

Abstract:

Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.

Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities

Procedia PDF Downloads 155
531 Agro-Forestry Expansion in Middle Gangetic Basin: Adopters' Motivations and Experiences in Bihar, India

Authors: Rakesh Tiwary, D. M. Diwakar, Sandhya Mahapatro

Abstract:

Agro-forestry offers huge opportunities for diversification of agriculture in middle Gangetic Basin of India, particularly in the state of Bihar as the region is identified with traditional & stagnant agriculture, low productivity, high population pressure, rural poverty and lack of agro- industrial development. The region is endowed with favourable agro-climatic, soil & drainage conditions; interestingly, there has been an age old tradition of agro-forestry in the state. However, due to demographic pressures, declining land holdings and other socio- economic factors, agro forestry practices have declined in recent decades. The government of Bihar has initiated a special program for expansion of agro-forestry based on modern practices with an aim to raise income level of farmers, make available raw material for wood based industries and increase green cover in the state. The Agro-forestry Schemes – Poplar & Other Species are the key components of the program being implemented by Department of Environment & Forest, Govt. of Bihar. The paper is based on fieldwork based evaluation study on experiences of implementation of the agro-forestry schemes. Understanding adoption patterns, identification of key motives for practising agro-forestry, experiences of farmers well analysing the barriers in expansion constituted the major themes of the research study. This paper is based on primary as well as secondary data. The primary data consists of beneficiary household survey, Focus Group Discussions among beneficiary communities, dialogue and multi stakeholder meetings and field visit to the sites. The secondary data information was collected and analysed from official records, policy documents and reports. Primary data was collected from about 500 beneficiary households of Muzaffarpur & Saharsa- two populous, large and agriculture dominated districts of middle Gangetic basin of North Bihar. Survey also covers 100 households of non-beneficiaries. Probability Proportionate to Size method was used to determine the number of samples to be covered in different blocks of two districts. Qualitative tools were also implemented to have better insights about key research questions. Present paper discusses socio-economic background of farmers practising agro-forestry; the adoption patterns of agro- forestry (choice of plants, methods of plantation and others); and motivation behind adoption of agro-forestry and the comparative benefits of agro-forestry (vis-a-vis traditional agriculture). Experience of beneficiary farmers with agro-forestry based on government programs & promotional campaigns (in terms of awareness, ease of access, knowhow and others) have been covered in the paper. Different aspects of survival of plants have been closely examined. Non beneficiaries but potential adopters were also interviewed to understand barriers of adoption of agro- forestry. Paper provides policy recommendations and interventions required for effective expansion of the agro- forestry and realisation of its future prospects for agricultural diversification in the region.

Keywords: agro-forestry adoption patterns, farmers’ motivations & experiences, Indian middle Gangetic plains, strategies for expansion

Procedia PDF Downloads 181
530 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 107
529 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design

Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell

Abstract:

The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.

Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity

Procedia PDF Downloads 122
528 Active Filtration of Phosphorus in Ca-Rich Hydrated Oil Shale Ash Filters: The Effect of Organic Loading and Form of Precipitated Phosphatic Material

Authors: Päärn Paiste, Margit Kõiv, Riho Mõtlep, Kalle Kirsimäe

Abstract:

For small-scale wastewater management, the treatment wetlands (TWs) as a low cost alternative to conventional treatment facilities, can be used. However, P removal capacity of TW systems is usually problematic. P removal in TWs is mainly dependent on the physico–chemical and hydrological properties of the filter material. Highest P removal efficiency has been shown trough Ca-phosphate precipitation (i.e. active filtration) in Ca-rich alkaline filter materials, e.g. industrial by-products like hydrated oil shale ash (HOSA), metallurgical slags. In this contribution we report preliminary results of a full-scale TW system using HOSA material for P removal for a municipal wastewater at Nõo site, Estonia. The main goals of this ongoing project are to evaluate: a) the long-term P removal efficiency of HOSA using real waste water; b) the effect of high organic loading rate; c) variable P-loading effects on the P removal mechanism (adsorption/direct precipitation); and d) the form and composition of phosphate precipitates. Onsite full-scale experiment with two concurrent filter systems for treatment of municipal wastewater was established in September 2013. System’s pretreatment steps include septic tank (2 m2) and vertical down-flow LECA filters (3 m2 each), followed by horizontal subsurface HOSA filters (effective volume 8 m3 each). Overall organic and hydraulic loading rates of both systems are the same. However, the first system is operated in a stable hydraulic loading regime and the second in variable loading regime that imitates the wastewater production in an average household. Piezometers for water and perforated sample containers for filter material sampling were incorporated inside the filter beds to allow for continuous in-situ monitoring. During the 18 months of operation the median removal efficiency (inflow to outflow) of both systems were over 99% for TP, 93% for COD and 57% for TN. However, we observed significant differences in the samples collected in different points inside the filter systems. In both systems, we observed development of preferred flow paths and zones with high and low loadings. The filters show formation and a gradual advance of a “dead” zone along the flow path (zone with saturated filter material characterized by ineffective removal rates), which develops more rapidly in the system working under variable loading regime. The formation of the “dead” zone is accompanied by the growth of organic substances on the filter material particles that evidently inhibit the P removal. Phase analysis of used filter materials using X-ray diffraction method reveals formation of minor amounts of amorphous Ca-phosphate precipitates. This finding is supported by ATR-FTIR and SEM-EDS measurements, which also reveal Ca-phosphate and authigenic carbonate precipitation. Our first experimental results demonstrate that organic pollution and loading regime significantly affect the performance of hydrated ash filters. The material analyses also show that P is incorporated into a carbonate substituted hydroxyapatite phase.

Keywords: active filtration, apatite, hydrated oil shale ash, organic pollution, phosphorus

Procedia PDF Downloads 254
527 The Effects of Stoke's Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators

Authors: Jacob Schwartz, Maxim Durach, Aniruddha Mitra, Abbas Rashidi, Glen Sage, Atin Adhikari

Abstract:

NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1.

Keywords: respiratory protection, industrial hygiene, aerosol, electrostatic force

Procedia PDF Downloads 171
526 CLEAN Jakarta Waste Bank Project: Alternative Solution in Urban Solid Waste Management by Community Based Total Sanitation (CBTS) Approach

Authors: Mita Sirait

Abstract:

Everyday Jakarta produces 7,000 tons of solid waste and only about 5,200 tons delivered to landfill out of the city by 720 trucks, the rest are left yet manageable, as reported by Government of Clean Sector. CLEAN Jakarta Project is aimed at empowering community to achieve healthy environment for children and families in urban slum in Semper Barat and Penjaringan sub-district of North Jakarta that consisted of 20,584 people. The project applies Community Based Total Sanitation, an approach to empowering community to achieve total hygiene and sanitation behaviour by triggering activities. As regulated by Ministry of Health, it has 5 pillars: (1) open defecation free, (2) hand-washing with soaps, (3) drinking-water treatment, (4) solid-waste management and (5) waste-water management; and 3 strategic components: 1) demand creation, 2) supply creation and 3) enabling environment. Demand creation is generated by triggering community’s reaction to their daily sanitation habits by exposing them to their surrounding where they can see faeces, waste and other environmental pollutant to stimulate disgusting, embarrassing and responsibility sense. Triggered people then challenged to commit to improving their hygiene practice such as to stop littering and start waste separation. In order to support this commitment, and for supply creation component, the project initiated waste bank with community working group. It facilitated capacity-building trainings, waste bank system formulation and meetings with local authorities to solicit land permit and waste bank decree. As it is of a general banking system, waste bank has customer service, teller, manager, legal paper and provides saving book and money transaction. In 8 months, two waste banks have established with 148 customers, 17 million rupiah cash, and about 9 million of stored recyclables. Approximately 2.5 tons of 15-35 types of recyclable are managed in both waste banks per week. On enabling environment, the project has initiated sanitation working group in community and multi sectors government level, and advocated both parties. The former is expected to promote behaviour change and monitoring in the community, while the latter is expected to support sanitation with regulations, strategies, appraisal and awards; to coordinate partnering and networking, and to replicate best practices to other areas.

Keywords: urban community, waste management, Jakarta, community based total sanitation (CBTS)

Procedia PDF Downloads 270
525 Possible Involvement of DNA-methyltransferase and Histone Deacetylase in the Regulation of Virulence Potential of Acanthamoeba castellanii

Authors: Yi H. Wong, Li L. Chan, Chee O. Leong, Stephen Ambu, Joon W. Mak, Priyadashi S. Sahu

Abstract:

Background: Acanthamoeba is a free-living opportunistic protist which is ubiquitously distributed in the environment. Virulent Acanthamoeba can cause fatal encephalitis in immunocompromised patients and potential blinding keratitis in immunocompetent contact lens wearers. Approximately 24 species have been identified but only the A. castellanii, A. polyphaga and A. culbertsoni are commonly associated with human infections. Until to date, the precise molecular basis for Acanthamoeba pathogenesis remains unclear. Previous studies reported that Acanthamoeba virulence can be diminished through prolonged axenic culture but revived through serial mouse passages. As no clear explanation on this reversible pathogenesis is established, hereby, we postulate that the epigenetic regulators, DNA-methyltransferases (DNMT) and histone-deacetylases (HDAC), could possibly be involved in granting the virulence plasticity of Acanthamoeba spp. Methods: Four rounds of mouse passages were conducted to revive the virulence potential of the virulence-attenuated Acanthamoeba castellanii strain (ATCC 50492). Briefly, each mouse (n=6/group) was inoculated intraperitoneally with Acanthamoebae cells (2x 105 trophozoites/mouse) and incubated for 2 months. Acanthamoebae cells were isolated from infected mouse organs by culture method and subjected to subsequent mouse passage. In vitro cytopathic, encystment and gelatinolytic assays were conducted to evaluate the virulence characteristics of Acanthamoebae isolates for each passage. PCR primers which targeted on the 2 members (DNMT1 and DNMT2) and 5 members (HDAC1 to 5) of the DNMT and HDAC gene families respectively were custom designed. Quantitative real-time PCR (qPCR) was performed to detect and quantify the relative expression of the two gene families in each Acanthamoeba isolates. Beta-tubulin of A. castellanii (Genbank accession no: XP_004353728) was included as housekeeping gene for data normalisation. PCR mixtures were also analyzed by electrophoresis for amplicons detection. All statistical analyses were performed using the paired one-tailed Student’s t test. Results: Our pathogenicity tests showed that the virulence-reactivated Acanthamoeba had a higher degree of cytopathic effect on vero cells, a better resistance to encystment challenge and a higher gelatinolytic activity which was catalysed by serine protease. qPCR assay showed that DNMT1 expression was significantly higher in the virulence-reactivated compared to the virulence-attenuated Acanthamoeba strain (p ≤ 0.01). The specificity of primers which targeted on DNMT1 was confirmed by sequence analysis of PCR amplicons, which showed a 97% similarity to the published DNA-methyltransferase gene of A. castellanii (GenBank accession no: XM_004332804.1). Out of the five primer pairs which targeted on the HDAC family genes, only HDAC4 expression was significantly difference between the two variant strains. In contrast to DNMT1, HDAC4 expression was much higher in the virulence-attenuated Acanthamoeba strain. Conclusion: Our mouse passages had successfully restored the virulence of the attenuated strain. Our findings suggested that DNA-methyltransferase (DNMT1) and histone deacetylase (HDAC4) expressions are associated with virulence potential of Acanthamoeba spp.

Keywords: acanthamoeba, DNA-methyltransferase, histone deacetylase, virulence-associated proteins

Procedia PDF Downloads 264
524 A Qualitative Exploration of the Beliefs and Experiences of HIV-Related Self-Stigma Amongst Young Adults Living with HIV in Zimbabwe

Authors: Camille Rich, Nadine Ferris France, Ann Nolan, Webster Mavhu, Vongai Munatsi

Abstract:

Background and Aim: Zimbabwe has one of the highest HIV rates in the world, with a 12.7% adult prevalence rate. Young adults are a key group affected by HIV, and one-third of all new infections in Zimbabwe are amongst people ages 18-24 years. Stigma remains one of the main barriers to managing and reducing the HIV crisis, especially for young adults. There are several types of stigma, including enacted stigma, the outward discrimination towards someone and self-stigma, the negative self-judgments one has towards themselves. Self-stigma can have severe consequences, including feelings of worthlessness, shame, suicidal thoughts, and avoidance of medical help. This can have detrimental effects on those living with HIV. However, the unique beliefs and impacts of self-stigma amongst key groups living with HIV have not yet been explored. Therefore, the focus of this study is on the beliefs and experiences of HIV-related self-stigma, as experienced by young adults living in Harare, Zimbabwe. Research Methods: A qualitative approach was taken for this study, using sixteen semi-structured interviews with young adults (18-24 years) who are living with HIV in Harare. Participants were conveniently and purposefully sampled as members of Africa, an organization dedicated to young people living with HIV. Interviews were conducted over Zoom due to the COVID-19 pandemic, recorded and then coded using the software NVivo. The data was analyzed using both inductive and deductive Thematic Analysis to find common themes. Results: All of the participants experienced HIV-related self-stigma, and both beliefs and experiences were explored. These negative self-perceptions included beliefs of worthlessness, hopelessness, and negative body image. The young adults described believing they were not good enough to be around HIV negative people or that they could never be loved due to their HIV status. Developing self-stigmatizing thoughts came from internalizing negative cultural values, stereotypes about people living with HIV, and adverse experiences. Three main themes of self-stigmatizing experiences emerged: disclosure difficulties, relationship complications, and being isolated. Fear of telling someone their status, rejection in a relationship, and being excluded by others due to their HIV status contributed to their self-stigma. These experiences caused feelings of loneliness, sadness, shame, fear, and low self-worth. Conclusions: This study explored the beliefs and experiences of HIV-related self-stigma of these young adults. The emergence of negative self-perceptions demonstrated deep-rooted beliefs of HIV-related self-stigma that adversely impact the participants. The negative self-perceptions and self-stigmatizing experiences caused the participants to feel worthless, hopeless, shameful, and alone-negatively impacting their physical and mental health, personal relationships, and sense of self-identity. These results can now be used to pursue interventions to target the specific beliefs and experiences of young adults living with HIV and reduce the adverse consequences of self-stigma.

Keywords: beliefs, HIV, self-stigma, stigma, Zimbabwe

Procedia PDF Downloads 91
523 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time

Authors: Deepak Loura

Abstract:

The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.

Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture

Procedia PDF Downloads 54
522 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning

Authors: Xingyu Gao, Qiang Wu

Abstract:

Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.

Keywords: patent influence, interpretable machine learning, predictive models, SHAP

Procedia PDF Downloads 20
521 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 50
520 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 42
519 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 107
518 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 93
517 The Role of Community Beliefs and Practices on the Spread of Ebola in Uganda, September 2022

Authors: Helen Nelly Naiga, Jane Frances Zalwango, Saudah N. Kizito, Brian Agaba, Brenda N Simbwa, Maria Goretti Zalwango, Richard Migisha, Benon Kwesiga, Daniel Kadobera, Alex Ario Riolexus, Sarah Paige, Julie R. Harris

Abstract:

Background: Traditional community beliefs and practices can facilitate the spread of Ebola virus during outbreaks. On September 20, 2022, Uganda declared a Sudan Virus Disease (SVD) outbreak after a case was confirmed in Mubende District. During September–November 2022, the outbreak spread to eight additional districts. We investigated the role of community beliefs and practices in the spread of SUDV in Uganda in 2022. Methods: A qualitative study was conducted in Mubende, Kassanda, and Kyegegwa districts in February 2023. We conducted nine focus group discussions (FGDs) and six key informant interviews (KIIs). FGDs included SVD survivors, household members of SVD patients, traditional healers, religious leaders, and community leaders. Key informants included community, political, and religious leaders, traditional healers, and health workers. We asked about community beliefs and practices to understand if and how they contributed to the spread of SUDV. Interviews were recorded, translated, transcribed, and analyzed thematically. Results: Frequently-reported themes included beliefs that the community deaths, later found to be due to SVD, were the result of witchcraft or poisoning. Key informants reported that SVD patients frequently first consulted traditional healers or spiritual leaders before seeking formal healthcare, and noted that traditional healers treated patients with signs and symptoms of SVD without protective measures. Additional themes included religious leaders conducting laying-on-of-hands prayers for SVD patients and symptomatic contacts, SVD patients and their symptomatic contacts hiding in friends’ homes, and exhumation of SVD patients originally buried in safe and dignified burials, to enable traditional burials. Conclusion: Multiple community beliefs and practices likely promoted SVD outbreak spread during the 2022 outbreak in Uganda. Engaging traditional and spiritual healers early during similar outbreaks through risk communication and community engagement efforts could facilitate outbreak control. Targeted community messaging, including clear biological explanations for clusters of deaths and information on the dangers of exhuming bodies of SVD patients, could similarly facilitate improved control in future outbreaks in Uganda.

Keywords: Ebola, Sudan virus, outbreak, beliefs, traditional

Procedia PDF Downloads 37
516 Speech and Swallowing Function after Tonsillo-Lingual Sulcus Resection with PMMC Flap Reconstruction: A Case Study

Authors: K. Rhea Devaiah, B. S. Premalatha

Abstract:

Background: Tonsillar Lingual sulcus is the area between the tonsils and the base of the tongue. The surgical resection of the lesions in the head and neck results in changes in speech and swallowing functions. The severity of the speech and swallowing problem depends upon the site and extent of the lesion, types and extent of surgery and also the flexibility of the remaining structures. Need of the study: This paper focuses on the importance of speech and swallowing rehabilitation in an individual with the lesion in the Tonsillar Lingual Sulcus and post-operative functions. Aim: Evaluating the speech and swallow functions post-intensive speech and swallowing rehabilitation. The objectives are to evaluate the speech intelligibility and swallowing functions after intensive therapy and assess the quality of life. Method: The present study describes a report of an individual aged 47years male, with the diagnosis of basaloid squamous cell carcinoma, left tonsillar lingual sulcus (pT2n2M0) and underwent wide local excision with left radical neck dissection with PMMC flap reconstruction. Post-surgery the patient came with a complaint of reduced speech intelligibility, and difficulty in opening the mouth and swallowing. Detailed evaluation of the speech and swallowing functions were carried out such as OPME, articulation test, speech intelligibility, different phases of swallowing and trismus evaluation. Self-reported questionnaires such as SHI-E(Speech handicap Index- Indian English), DHI (Dysphagia handicap Index) and SESEQ -K (Self Evaluation of Swallowing Efficiency in Kannada) were also administered to know what the patient feels about his problem. Based on the evaluation, the patient was diagnosed with pharyngeal phase dysphagia associated with trismus and reduced speech intelligibility. Intensive speech and swallowing therapy was advised weekly twice for the duration of 1 hour. Results: Totally the patient attended 10 intensive speech and swallowing therapy sessions. Results indicated misarticulation of speech sounds such as lingua-palatal sounds. Mouth opening was restricted to one finger width with difficulty chewing, masticating, and swallowing the bolus. Intervention strategies included Oro motor exercise, Indirect swallowing therapy, usage of a trismus device to facilitate mouth opening, and change in the food consistency to help to swallow. A practice session was held with articulation drills to improve the production of speech sounds and also improve speech intelligibility. Significant changes in articulatory production and speech intelligibility and swallowing abilities were observed. The self-rated quality of life measures such as DHI, SHI and SESE Q-K revealed no speech handicap and near-normal swallowing ability indicating the improved QOL after the intensive speech and swallowing therapy. Conclusion: Speech and swallowing therapy post carcinoma in the tonsillar lingual sulcus is crucial as the tongue plays an important role in both speech and swallowing. The role of Speech-language and swallowing therapists in oral cancer should be highlighted in treating these patients and improving the overall quality of life. With intensive speech-language and swallowing therapy post-surgery for oral cancer, there can be a significant change in the speech outcome and swallowing functions depending on the site and extent of lesions which will thereby improve the individual’s QOL.

Keywords: oral cancer, speech and swallowing therapy, speech intelligibility, trismus, quality of life

Procedia PDF Downloads 83
515 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients

Authors: Lise Paesen, Marielle Leijten

Abstract:

People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.

Keywords: Alzheimer's disease, experimental design, language decline, writing process

Procedia PDF Downloads 252
514 Understanding New Zealand’s 19th Century Timber Churches: Techniques in Extracting and Applying Underlying Procedural Rules

Authors: Samuel McLennan, Tane Moleta, Andre Brown, Marc Aurel Schnabel

Abstract:

The development of Ecclesiastical buildings within New Zealand has produced some unique design characteristics that take influence from both international styles and local building methods. What this research looks at is how procedural modelling can be used to define such common characteristics and understand how they are shared and developed within different examples of a similar architectural style. This will be achieved through the creation of procedural digital reconstructions of the various timber Gothic Churches built during the 19th century in the city of Wellington, New Zealand. ‘Procedural modelling’ is a digital modelling technique that has been growing in popularity, particularly within the game and film industry, as well as other fields such as industrial design and architecture. Such a design method entails the creation of a parametric ‘ruleset’ that can be easily adjusted to produce many variations of geometry, rather than a single geometry as is typically found in traditional CAD software. Key precedents within this area of digital heritage includes work by Haegler, Müller, and Gool, Nicholas Webb and Andre Brown, and most notably Mark Burry. What these precedents all share is how the forms of the reconstructed architecture have been generated using computational rules and an understanding of the architects’ geometric reasoning. This is also true within this research as Gothic architecture makes use of only a select range of forms (such as the pointed arch) that can be accurately replicated using the same standard geometric techniques originally used by the architect. The methodology of this research involves firstly establishing a sample group of similar buildings, documenting the existing samples, researching any lost samples to find evidence such as architectural plans, photos, and written descriptions, and then culminating all the findings into a single 3D procedural asset within the software ‘Houdini’. The end result will be an adjustable digital model that contains all the architectural components of the sample group, such as the various naves, buttresses, and windows. These components can then be selected and arranged to create visualisations of the sample group. Because timber gothic churches in New Zealand share many details between designs, the created collection of architectural components can also be used to approximate similar designs not included in the sample group, such as designs found beyond the Wellington Region. This creates an initial library of architectural components that can be further expanded on to encapsulate as wide of a sample size as desired. Such a methodology greatly improves upon the efficiency and adjustability of digital modelling compared to current practices found in digital heritage reconstruction. It also gives greater accuracy to speculative design, as a lack of evidence for lost structures can be approximated using components from still existing or better-documented examples. This research will also bring attention to the cultural significance these types of buildings have within the local area, addressing the public’s general unawareness of architectural history that is identified in the Wellington based research ‘Moving Images in Digital Heritage’ by Serdar Aydin et al.

Keywords: digital forensics, digital heritage, gothic architecture, Houdini, procedural modelling

Procedia PDF Downloads 108
513 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms

Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright

Abstract:

Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.

Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology

Procedia PDF Downloads 139
512 The Impression of Adaptive Capacity of the Rural Community in the Indian Himalayan Region: A Way Forward for Sustainable Livelihood Development

Authors: Rommila Chandra, Harshika Choudhary

Abstract:

The value of integrated, participatory, and community based sustainable development strategies is eminent, but in practice, it still remains fragmentary and often leads to short-lived results. Despite the global presence of climate change, its impacts are felt differently by different communities based on their vulnerability. The developing countries have the low adaptive capacity and high dependence on environmental variables, making them highly susceptible to outmigration and poverty. We need to understand how to enable these approaches, taking into account the various governmental and non-governmental stakeholders functioning at different levels, to deliver long-term socio-economic and environmental well-being of local communities. The research assessed the financial and natural vulnerability of Himalayan networks, focusing on their potential to adapt to various changes, through accessing their perceived reactions and local knowledge. The evaluation was conducted by testing indices for vulnerability, with a major focus on indicators for adaptive capacity. Data for the analysis were collected from the villages around Govind National Park and Wildlife Sanctuary, located in the Indian Himalayan Region. The villages were stratified on the basis of connectivity via road, thus giving two kinds of human settlements connected and isolated. The study focused on understanding the complex relationship between outmigration and the socio-cultural sentiments of local people to not abandon their land, assessing their adaptive capacity for livelihood opportunities, and exploring their contribution that integrated participatory methodologies can play in delivering sustainable development. The result showed that the villages having better road connectivity, access to market, and basic amenities like health and education have a better understanding about the climatic shift, natural hazards, and a higher adaptive capacity for income generation in comparison to the isolated settlements in the hills. The participatory approach towards environmental conservation and sustainable use of natural resources were seen more towards the far-flung villages. The study helped to reduce the gap between local understanding and government policies by highlighting the ongoing adaptive practices and suggesting precautionary strategies for the community studied based on their local conditions, which differ on the basis of connectivity and state of development. Adaptive capacity in this study has been taken as the externally driven potential of different parameters, leading to a decrease in outmigration and upliftment of the human environment that could lead to sustainable livelihood development in the rural areas of Himalayas.

Keywords: adaptive capacity, Indian Himalayan region, participatory, sustainable livelihood development

Procedia PDF Downloads 92