Search results for: real-time spatial big data
23673 Model-Based Field Extraction from Different Class of Administrative Documents
Authors: Jinen Daghrir, Anis Kricha, Karim Kalti
Abstract:
The amount of incoming administrative documents is massive and manually processing these documents is a costly task especially on the timescale. In fact, this problem has led an important amount of research and development in the context of automatically extracting fields from administrative documents, in order to reduce the charges and to increase the citizen satisfaction in administrations. In this matter, we introduce an administrative document understanding system. Given a document in which a user has to select fields that have to be retrieved from a document class, a document model is automatically built. A document model is represented by an attributed relational graph (ARG) where nodes represent fields to extract, and edges represent the relation between them. Both of vertices and edges are attached with some feature vectors. When another document arrives to the system, the layout objects are extracted and an ARG is generated. The fields extraction is translated into a problem of matching two ARGs which relies mainly on the comparison of the spatial relationships between layout objects. Experimental results yield accuracy rates from 75% to 100% tested on eight document classes. Our proposed method has a good performance knowing that the document model is constructed using only one single document.Keywords: administrative document understanding, logical labelling, logical layout analysis, fields extraction from administrative documents
Procedia PDF Downloads 21523672 Computer Server Virtualization
Authors: Pradeep M. C. Chand
Abstract:
Virtual infrastructure initiatives often spring from data center server consolidation projects, which focus on reducing existing infrastructure “box count”, retiring older hardware or life-extending legacy applications. Server consolidation benefits result from a reduction in the overall number of systems and related recurring costs (power, cooling, rack space, etc.) and also helps in the reduction of heat to the environment.Keywords: server virtualization, data center, consolidation, project
Procedia PDF Downloads 53223671 Conceptual Design of a Residential House Based on IDEA 4E - Discussion of the Process of Interdisciplinary Pre-Project Research and Optimal Design Solutions Created as Part of Project-Based Learning
Authors: Dorota Winnicka-Jasłowska, Małgorzata Jastrzębska, Jan Kaczmarczyk, Beata Łaźniewska-Piekarczyk, Piotr Skóra, Beata Kobiałko, Agata Kołodziej, Błażej Mól, Ewelina Lasyk, Karolina Brzęczek, Michał Król
Abstract:
Creating economical, comfortable, and healthy buildings which respect the environment is a necessity resulting from legal regulations, but it is also a response to the expectations of a modern investor. Developing the concept of a residential house based on the 4E and the 2+2+(1) IDEAs is a complex process that requires specialist knowledge of many trades and requires adaptation of comprehensive solutions. IDEA 4E assumes the use of energy-saving, ecological, ergonomics, and economic solutions. In addition, IDEA 2+2+(1) assuming appropriate surface and functional-spatial solutions for a family at different stages of a building's life, i.e. 2, 4, or 5 members, enforces certain flexibility of the designed building, which may change with the number and age of its users. The building should therefore be easy to rearrange or expand. The task defined in this way was carried out by an interdisciplinary team of students of the Silesian University of Technology as part of PBL. The team consisted of 6 undergraduate and graduate students representing the following faculties: 3 students of architecture, 2 civil engineering students, and 1 student of environmental engineering. The work of the team was supported by 3 academic teachers representing the above-mentioned faculties and additional experts. The project was completed in one semester. The article presents the successive stages of the project. At first pre-design studies were carried out. They allowed to define the guidelines for the project. For this purpose, the "Model house" questionnaire was developed. The questions concerned determining the utility needs of a potential family that would live in a model house - specifying the types of rooms, their size, and equipment. A total of 114 people participated in the study. The answers to the questions in the survey helped to build the functional programme of the designed house. Other research consisted in the search for optimal technological and construction solutions and the most appropriate building materials based mainly on recycling. Appropriate HVAC systems responsible for the building's microclimate were also selected, i.e. low, temperature heating, mechanical ventilation, and the use of energy from renewable sources was planned so as to obtain a nearly zero-energy building. Additionally, rainwater retention and its local use were planned. The result of the project was a design of a model residential building that meets the presented assumptions. A 3D VR spatial model of the designed building and its surroundings was also made. The final result was the organization of an exhibition for students and the academic community. Participation in the interdisciplinary project allowed the project team members to better understand the consequences of the adopted solutions for achieving the assumed effect and the need to work out a compromise. The implementation of the project made all its participants aware of the importance of cooperation as well as systematic and clear communication. The need to define milestones and their consistent enforcement is an important element guaranteeing the achievement of the intended end result. The implementation of PBL enables students to the acquire competences important in their future professional work.Keywords: architecture and urban planning, civil engineering, environmental engineering, project-based learning, sustainable building
Procedia PDF Downloads 12323670 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior
Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli
Abstract:
Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).Keywords: urban mobility, decongestion, machine learning, neural network
Procedia PDF Downloads 19923669 Paleobathymetry and Biostratigraphy of Sambipitu Formation and Its Relation with the Presence of Ichnofossil in Geoheritage Site Ngalang River Yogyakarta
Authors: Harman Dwi R., Alwin Mugiyantoro, Heppy Chintya P.
Abstract:
The location of this research is a part of Geoheritage that located in Nglipar, Gunung Kidul Regency, Yogyakarta Special Region. Whereas in this location, the carbonate sandstone of Sambipitu Formation (early-middle Miocene) is well exposed along Ngalang River, also there are ichnofossil presence which causes this formation to be interesting. The determination of paleobathymetry is particularly important in determining paleoenvironment and paleogeographic. Paleobathymetry can be determined by identifying the presence of Foraminifera bentonik fossil and parasequence emerge. The methods that used in this study are spatial method of field observation with systematic sampling, descriptive method of paleontology, biostratigraphy analysis, geometrical analysis of Ichnofossil, and study literature. The result obtained that paleobathymetry of this location is bathyal zone with maximum regression known by Bulliminoides williamsonianus showing depth 17 fathoms at the age of N3-N5 (Oligocenne-Early Miocene) and the maximum transgression is known by Cibicides pseudoungarianus showing depth 862 fathoms at the age of N8-N9 (Early-Middle Miocene). Where the obtained paleobathymetry supported of the presence and formed the pattern of ichnofossil that found in the study area.Keywords: paleobathymetry, biostratigraphy, ichnofossil, Ngalang river
Procedia PDF Downloads 17323668 Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Authors: Gabriela V. Angeles Perez, Jose Castillejos Lopez, Araceli L. Reyes Cabello, Emilio Bravo Grajales, Adriana Perez Espinosa, Jose L. Quiroz Fabian
Abstract:
Road traffic accidents are among the principal causes of traffic congestion, causing human losses, damages to health and the environment, economic losses and material damages. Studies about traditional road traffic accidents in urban zones represents very high inversion of time and money, additionally, the result are not current. However, nowadays in many countries, the crowdsourced GPS based traffic and navigation apps have emerged as an important source of information to low cost to studies of road traffic accidents and urban congestion caused by them. In this article we identified the zones, roads and specific time in the CDMX in which the largest number of road traffic accidents are concentrated during 2016. We built a database compiling information obtained from the social network known as Waze. The methodology employed was Discovery of knowledge in the database (KDD) for the discovery of patterns in the accidents reports. Furthermore, using data mining techniques with the help of Weka. The selected algorithms was the Maximization of Expectations (EM) to obtain the number ideal of clusters for the data and k-means as a grouping method. Finally, the results were visualized with the Geographic Information System QGIS.Keywords: data mining, k-means, road traffic accidents, Waze, Weka
Procedia PDF Downloads 42023667 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method
Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine
Abstract:
This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR
Procedia PDF Downloads 6823666 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 17923665 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 16723664 The Relationship between Political Risks and Capital Adequacy Ratio: Evidence from GCC Countries Using a Dynamic Panel Data Model (System–GMM)
Authors: Wesam Hamed
Abstract:
This paper contributes to the existing literature by investigating the impact of political risks on the capital adequacy ratio in the banking sector of Gulf Cooperation Council (GCC) countries, which is the first attempt for this nexus to the best of our knowledge. The dynamic panel data model (System‐GMM) showed that political risks significantly decrease the capital adequacy ratio in the banking sector. For this purpose, we used political risks, bank-specific, profitability, and macroeconomic variables that are utilized from the data stream database for the period 2005-2017. The results also actively support the “too big to fail” hypothesis. Finally, the robustness results confirm the conclusions derived from the baseline System‐GMM model.Keywords: capital adequacy ratio, system GMM, GCC, political risks
Procedia PDF Downloads 15423663 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.Keywords: PWR, ALOHA, habitability, Maanshan
Procedia PDF Downloads 20223662 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 29923661 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: data transformation, functional programming, information server, optimization
Procedia PDF Downloads 16223660 Dimension Free Rigid Point Set Registration in Linear Time
Authors: Jianqin Qu
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.Keywords: covariant point, point matching, dimension free, rigid registration
Procedia PDF Downloads 17223659 The Bicoid Gradient in the Drosophila Embryo: 3D Modelling with Realistic Egg Geometries
Authors: Alexander V. Spirov, David M. Holloway, Ekaterina M. Myasnikova
Abstract:
Segmentation of the early Drosophila embryo results from the dynamic establishment of spatial gene expression patterns. Patterning occurs on an embryo geometry which is a 'deformed' prolate ellipsoid, with anteroposterior and dorsal-ventral major and minor axes, respectively. Patterning is largely independent along each axis, but some interaction can be seen in the 'bending' of the segmental expression stripes. This interaction is not well understood. In this report, we investigate how 3D geometrical features of the early embryo affect the segmental expression patterning. Specifically, we study the effect of geometry on formation of the Bicoid primary morphogenetic gradient. Our computational results demonstrate that embryos with a much longer ventral than dorsal surface ('bellied') can produce curved Bicoid concentration contours which could activate curved stripes in the downstream pair-rule segmentation genes. In addition, we show that having an extended source for Bicoid in the anterior of the embryo may be necessary for producing the observed exponential form of the Bicoid gradient along the anteroposterior axis.Keywords: Drosophila embryo, bicoid morphogenetic gradient, exponential expression profile, expression surface form, segmentation genes, 3D modelling
Procedia PDF Downloads 27923658 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data
Procedia PDF Downloads 33823657 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 40623656 Winter – Not Spring - Climate Drives Annual Adult Survival in Common Passerines: A Country-Wide, Multi-Species Modeling Exercise
Authors: Manon Ghislain, Timothée Bonnet, Olivier Gimenez, Olivier Dehorter, Pierre-Yves Henry
Abstract:
Climatic fluctuations affect the demography of animal populations, generating changes in population size, phenology, distribution and community assemblages. However, very few studies have identified the underlying demographic processes. For short-lived species, like common passerine birds, are these changes generated by changes in adult survival or in fecundity and recruitment? This study tests for an effect of annual climatic conditions (spring and winter) on annual, local adult survival at very large spatial (a country, 252 sites), temporal (25 years) and biological (25 species) scales. The Constant Effort Site ringing has allowed the collection of capture - mark - recapture data for 100 000 adult individuals since 1989, over metropolitan France, thus documenting annual, local survival rates of the most common passerine birds. We specifically developed a set of multi-year, multi-species, multi-site Bayesian models describing variations in local survival and recapture probabilities. This method allows for a statistically powerful hierarchical assessment (global versus species-specific) of the effects of climate variables on survival. A major part of between-year variations in survival rate was common to all species (74% of between-year variance), whereas only 26% of temporal variation was species-specific. Although changing spring climate is commonly invoked as a cause of population size fluctuations, spring climatic anomalies (mean precipitation or temperature for March-August) do not impact adult survival: only 1% of between-year variation of species survival is explained by spring climatic anomalies. However, for sedentary birds, winter climatic anomalies (North Atlantic Oscillation) had a significant, quadratic effect on adult survival, birds surviving less during intermediate years than during more extreme years. For migratory birds, we do not detect an effect of winter climatic anomalies (Sahel Rainfall). We will analyze the life history traits (migration, habitat, thermal range) that could explain a different sensitivity of species to winter climate anomalies. Overall, we conclude that changes in population sizes for passerine birds are unlikely to be the consequences of climate-driven mortality (or emigration) in spring but could be induced by other demographic parameters, like fecundity.Keywords: Bayesian approach, capture-recapture, climate anomaly, constant effort sites scheme, passerine, seasons, survival
Procedia PDF Downloads 30523655 Impact of Instagram Food Bloggers on Consumer (Generation Z) Decision Making Process in Islamabad. Pakistan
Authors: Tabinda Sadiq, Tehmina Ashfaq Qazi, Hoor Shumail
Abstract:
Recently, the advent of emerging technology has created an emerging generation of restaurant marketing. It explores the aspects that influence customers’ decision-making process in selecting a restaurant after reading food bloggers' reviews online. The motivation behind this research is to investigate the correlation between the credibility of the source and their attitude toward restaurant visits. The researcher collected the data by distributing a survey questionnaire through google forms by employing the Source credibility theory. Non- probability purposive sampling technique was used to collect data. The questionnaire used a predeveloped and validated scale by Ohanian to measure the relationship. Also, the researcher collected data from 250 respondents in order to investigate the influence of food bloggers on Gen Z's decision-making process. SPSS statistical version 26 was used for statistical testing and analyzing the data. The findings of the survey revealed that there is a moderate positive correlation between the variables. So, it can be analyzed that food bloggers do have an impact on Generation Z's decision making process.Keywords: credibility, decision making, food bloggers, generation z, e-wom
Procedia PDF Downloads 7823654 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis
Authors: Pornpimol Chaiwuttisak
Abstract:
The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.Keywords: DEA, wholesales and retails, logistics, Thailand
Procedia PDF Downloads 41923653 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 10423652 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 12723651 Application of Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) Database in Nursing Health Problems with Prostate Cancer-a Pilot Study
Authors: Hung Lin-Zin, Lai Mei-Yen
Abstract:
Prostate cancer is the most commonly diagnosed male cancer in the U.S. The prevalence is around 1 in 8. The etiology of prostate cancer is still unknown, but some predisposing factors, such as age, black race, family history, and obesity, may increase the risk of the disease. In 2020, a total of 7,178 Taiwanese people were nearly diagnosed with prostate cancer, accounting for 5.88% of all cancer cases, and the incidence rate ranked fifth among men. In that year, the total number of deaths from prostate cancer was 1,730, accounting for 3.45% of all cancer deaths, and the death rate ranked 6th among men, accounting for 94.34% of the cases of male reproductive organs. Looking for domestic and foreign literature on the use of OMOP (Observational Medical Outcomes Partnership, hereinafter referred to as OMOP) database analysis, there are currently nearly a hundred literature published related to nursing-related health problems and nursing measures built in the OMOP general data model database of medical institutions are extremely rare. The OMOP common data model construction analysis platform is a system developed by the FDA in 2007, using a common data model (common data model, CDM) to analyze and monitor healthcare data. It is important to build up relevant nursing information from the OMOP- CDM database to assist our daily practice. Therefore, we choose prostate cancer patients who are our popular care objects and use the OMOP- CDM database to explore the common associated health problems. With the assistance of OMOP-CDM database analysis, we can expect early diagnosis and prevention of prostate cancer patients' comorbidities to improve patient care.Keywords: OMOP, nursing diagnosis, health problem, prostate cancer
Procedia PDF Downloads 7623650 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 48923649 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.Keywords: building measurement, construction management, learning challenges, evaluate survey
Procedia PDF Downloads 14423648 Using Data-Driven Model on Online Customer Journey
Authors: Ing-Jen Hung, Tzu-Chien Wang
Abstract:
Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.Keywords: LSTM, customer journey, marketing, channel ads
Procedia PDF Downloads 12423647 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya
Authors: Faraj M. Elkhatri
Abstract:
The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss
Procedia PDF Downloads 16123646 A Secure Proxy Signature Scheme with Fault Tolerance Based on RSA System
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Due to the rapid growth in modern communication systems, fault tolerance and data security are two important issues in a secure transaction. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a secure proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.Keywords: proxy signature, fault tolerance, rsa, key agreement protocol
Procedia PDF Downloads 28823645 Estimating the Receiver Operating Characteristic Curve from Clustered Data and Case-Control Studies
Authors: Yalda Zarnegarnia, Shari Messinger
Abstract:
Receiver operating characteristic (ROC) curves have been widely used in medical research to illustrate the performance of the biomarker in correctly distinguishing the diseased and non-diseased groups. Correlated biomarker data arises in study designs that include subjects that contain same genetic or environmental factors. The information about correlation might help to identify family members at increased risk of disease development, and may lead to initiating treatment to slow or stop the progression to disease. Approaches appropriate to a case-control design matched by family identification, must be able to accommodate both the correlation inherent in the design in correctly estimating the biomarker’s ability to differentiate between cases and controls, as well as to handle estimation from a matched case control design. This talk will review some developed methods for ROC curve estimation in settings with correlated data from case control design and will discuss the limitations of current methods for analyzing correlated familial paired data. An alternative approach using Conditional ROC curves will be demonstrated, to provide appropriate ROC curves for correlated paired data. The proposed approach will use the information about the correlation among biomarker values, producing conditional ROC curves that evaluate the ability of a biomarker to discriminate between diseased and non-diseased subjects in a familial paired design.Keywords: biomarker, correlation, familial paired design, ROC curve
Procedia PDF Downloads 24123644 Code-Switching among Local UCSI Stem and N-Stem Undergraduates during Knowledge Sharing
Authors: Adeela Abu Bakar, Minder Kaur, Parthaman Singh
Abstract:
In the Malaysian education system, a formal setting of English language learning takes place in a content-based classroom (CBC). Until recently, there is less study in Malaysia, which researched the effects of code-switching (CS) behaviour towards the students’ knowledge sharing (KS) with their peers. The aim of this study is to investigate the frequency, reasons, and effect that CS, from the English language to Bahasa Melayu, has among local STEM and N-STEM undergraduates towards KS in a content-based classroom. The study implies a mixed-method research design with questionnaire and interviews as the instruments. The data is collected through distribution of questionnaires and interviews with the undergraduates. The quantitative data is analysed using SPSS in simple frequencies and percentages, whereas qualitative data involves organizing the data into themes, followed by analysis. Findings found that N-STEM undergraduates code-switch more as compared to STEM undergraduates. In addition to that, both the STEM and N-STEM undergraduates agree that CS acts as a catalyst towards KS in a content-based classroom. However, they also acknowledge that excess use of CS can be a hindrance towards KS. The findings of the study can benefit STEM and N-STEM undergraduates, education policymakers, language teachers, university educators, and students with significant insights into the role of CS towards KS in a content-based classroom. Some of the recommendations that can be applied for future studies are that the number of participants can be increased, an observation to be included for the data collection.Keywords: switching, content-based classroom, content and language integrated learning, knowledge sharing, STEM and N-STEM undergraduates
Procedia PDF Downloads 139