Search results for: learning assessment
9234 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: air pollution, landfill emission, environmental management, monitoring/methods and impact assessment
Procedia PDF Downloads 3259233 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 419232 Training for Search and Rescue Teams: Online Training for SAR Teams to Locate Lost Persons with Dementia Using Drones
Authors: Dalia Hanna, Alexander Ferworn
Abstract:
This research provides detailed proposed training modules for the public safety teams and, specifically, SAR teams responsible for search and rescue operations related to finding lost persons with dementia. Finding a lost person alive is the goal of this training. Time matters if a lost person is to be found alive. Finding lost people living with dementia is quite challenging, as they are unaware they are lost and will not seek help. Even a small contribution to SAR operations could contribute to saving a life. SAR operations will always require expert professional and human volunteers. However, we can reduce their time, save lives, and reduce costs by providing practical training that is based on real-life scenarios. The content for the proposed training is based on the research work done by the researcher in this area. This research has demonstrated that, based on utilizing drones, the algorithmic approach could support a successful search outcome. Understanding the behavior of the lost person, learning where they may be found, predicting their survivability, and automating the search are all contributions of this work, founded in theory and demonstrated in practice. In crisis management, human behavior constitutes a vital aspect in responding to the crisis; the speed and efficiency of the response often get affected by the difficulty of the context of the operation. Therefore, training in this area plays a significant role in preparing the crisis manager to manage the emotional aspects that lead to decision-making in these critical situations. Since it is crucial to gain high-level strategic choices and the ability to apply crisis management procedures, simulation exercises become central in training crisis managers to gain the needed skills to respond critically to these events. The training will enhance the responders’ ability to make decisions and anticipate possible consequences of their actions through flexible and revolutionary reasoning in responding to the crisis efficiently and quickly. As adult learners, search and rescue teams will be approaching training and learning by taking responsibility of the learning process, appreciate flexible learning and as contributors to the teaching and learning happening during that training. These are all characteristics of adult learning theories. The learner self-reflects, gathers information, collaborates with others and is self-directed. One of the learning strategies associated with adult learning is effective elaboration. It helps learners to remember information in the long term and use it in situations where it might be appropriate. It is also a strategy that can be taught easily and used with learners of different ages. Designers must design reflective activities to improve the student’s intrapersonal awareness.Keywords: training, OER, dementia, drones, search and rescue, adult learning, UDL, instructional design
Procedia PDF Downloads 1129231 An Appraisal of the Design, Content, Approaches and Materials of the K-12 Grade 8 English Curriculum by Language Teachers, Supervisors and Teacher-Trainers
Authors: G. Infante Dennis, S. Balinas Elvira, C. Valencia Yolanda, Cunanan
Abstract:
This paper examined the feed-backs, concerns, and insights of the teachers, supervisors, and teacher-trainers on the nature and qualities of the K-12 grade 8 design, content, approaches, and materials. Specifically, it sought to achieve the following objectives: 1) to describe the critical nature and qualities of the design, content, teaching-learning-and-evaluation approaches, and the materials to be utilized in the implementation of the grade 8 curriculum; 2) to extract the possible challenges relevant to the implementation of the design, content, teaching-learning-and-evaluation approaches, and the materials of the grade 8 curriculum in terms of the linguistic and technical competence of the teachers, readiness to implement, willingness to implement, and capability to make relevant adaptations; 3) to present essential demands on the successful and meaningful implementation of the grade 8 curriculum in terms of teacher-related factors, school-related factors, and student-related concerns.Keywords: curriculum reforms, K-12, teacher-training, language teaching, learning
Procedia PDF Downloads 2559230 Flood Risk Assessment and Adapted to the Climate Change by a Trade-Off Process in Land Use Planning
Authors: Nien-Ming Hong, Kuei-Fang Huang
Abstract:
Climate change is an important issue in future, which seriously affects water resources for a long term planning and management. Flood assessment is highly related with climate and land use. Increasing rainfall and urbanization will induce the inundated area in future. For adapting the impacts of climate change, a land use planning is a good strategy for reducing flood damage. The study is to build a trade-off process with different land use types. The Ta-Liao watershed is the study area with three types of land uses that are build-up, farm and forest. The build-up area is concentrated in the downstream of the watershed. Different rainfall amounts are applied for assessing the land use in 1996, 2005 and 2013. The adapted strategies are based on retarding the development of urban and a trade-off process. When a land changes from farm area to built-up area in downstream, this study is to search for a farm area and change it to forest/grass area or building a retention area in the upstream. For assessing the effects of the strategy, the inundation area is simulated by the Flo-2D model with different rainfall conditions and land uses. The results show inundation maps of several cases with land use change planning. The results also show the trade-off strategies and retention areas can decrease the inundated area and divide the inundated area, which are better than retarding urban development. The land use change is usually non-reverse and the planning should be constructed before the climate change.Keywords: climate change, land use change, flood risk assessment, land use planning
Procedia PDF Downloads 3389229 Using Data Mining in Automotive Safety
Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler
Abstract:
Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact
Procedia PDF Downloads 3839228 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 5229227 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 3799226 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time
Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen
Abstract:
Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.Keywords: 4C/ID model, virtual patients, education, dental, instructional design
Procedia PDF Downloads 839225 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management
Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige
Abstract:
Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.Keywords: discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability
Procedia PDF Downloads 2809224 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil
Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul
Abstract:
As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil
Procedia PDF Downloads 2299223 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 189222 The Mediating Role of Masculine Gender Role Stress on the Relationship between the EFL learners’ Self-Disclosure and English Class Anxiety
Authors: Muhammed Kök & Adem Kantar
Abstract:
Learning a foreign language can be affected by various factors such as age, aptitude, motivation, L2 disposition, etc. Among these factors, masculine gender roles stress (MGRS) that male learners possess is the least touched area that has been examined so far.MGRS can be defined as the traditional male role stress when the male learners feel the masculinity threat against their traditionally adopted masculinity norms. Traditional masculine norms include toughness, accuracy, completeness, and faultlessness. From this perspective, these norms are diametrically opposed to the language learning process since learning a language, by its nature, involves stages such as making mistakes and errors, not recalling words, pronouncing sounds incorrectly, creating wrong sentences, etc. Considering the potential impact of MGRS on the language learning process, the main purpose of this study is to investigate the mediating role of MGRS on the relationship between the EFL learners’ self-disclosure and English class anxiety. Data were collected from Turkish EFL learners (N=282) who study different majors in various state universities across Turkey. Data were analyzed by means of the Bootstraping method using the SPSS Process Macro plugin. The findings show that the indirect effect of self-disclosure level on the English Class Anxiety via MGRS was significant. We conclude that one of the reasons why Turkish EFL learners have English class anxiety might be the pressure that they feel because of their traditional gender role stress.Keywords: masculine, gender role stress, english class anxiety, self-disclosure, masculinity norms
Procedia PDF Downloads 1009221 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 2679220 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 999219 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 259218 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1169217 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1909216 User-Perceived Quality Factors for Certification Model of Web-Based System
Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh
Abstract:
One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.Keywords: software certification model, user centric approach, software quality factors, metrics and measurements, web-based system
Procedia PDF Downloads 4069215 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 1039214 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process
Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli
Abstract:
In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values
Procedia PDF Downloads 4329213 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 679212 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1869211 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study
Authors: Nir Wittenberg, Moshe Farhi
Abstract:
This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations
Procedia PDF Downloads 829210 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 1379209 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 829208 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement
Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo
Abstract:
This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement
Procedia PDF Downloads 849207 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia
Authors: Arif Budiman
Abstract:
Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check
Procedia PDF Downloads 4429206 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison
Authors: Saugata Bose, Ritambhra Korpal
Abstract:
The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram
Procedia PDF Downloads 3609205 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text
Authors: Trisha Malhotra
Abstract:
Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.Keywords: analysis, data, diary, emotions, mood, sentiment
Procedia PDF Downloads 270