Search results for: assessment for learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12220

Search results for: assessment for learning

9190 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria

Authors: Ibrahim Abubakar Mikugi

Abstract:

Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.

Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology

Procedia PDF Downloads 521
9189 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 379
9188 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 80
9187 The Intersection of Artificial Intelligence and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.

Keywords: AI, mathematics, machine learning, optimization techniques, image processing

Procedia PDF Downloads 16
9186 The Mediating Role of Masculine Gender Role Stress on the Relationship between the EFL learners’ Self-Disclosure and English Class Anxiety

Authors: Muhammed Kök & Adem Kantar

Abstract:

Learning a foreign language can be affected by various factors such as age, aptitude, motivation, L2 disposition, etc. Among these factors, masculine gender roles stress (MGRS) that male learners possess is the least touched area that has been examined so far.MGRS can be defined as the traditional male role stress when the male learners feel the masculinity threat against their traditionally adopted masculinity norms. Traditional masculine norms include toughness, accuracy, completeness, and faultlessness. From this perspective, these norms are diametrically opposed to the language learning process since learning a language, by its nature, involves stages such as making mistakes and errors, not recalling words, pronouncing sounds incorrectly, creating wrong sentences, etc. Considering the potential impact of MGRS on the language learning process, the main purpose of this study is to investigate the mediating role of MGRS on the relationship between the EFL learners’ self-disclosure and English class anxiety. Data were collected from Turkish EFL learners (N=282) who study different majors in various state universities across Turkey. Data were analyzed by means of the Bootstraping method using the SPSS Process Macro plugin. The findings show that the indirect effect of self-disclosure level on the English Class Anxiety via MGRS was significant. We conclude that one of the reasons why Turkish EFL learners have English class anxiety might be the pressure that they feel because of their traditional gender role stress.

Keywords: masculine, gender role stress, english class anxiety, self-disclosure, masculinity norms

Procedia PDF Downloads 99
9185 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay

Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira

Abstract:

Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.

Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO

Procedia PDF Downloads 264
9184 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion

Authors: Swarna Pundir, Prabuddha Hans

Abstract:

As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved.

Keywords: AI, ML, DL, ANN

Procedia PDF Downloads 98
9183 User-Perceived Quality Factors for Certification Model of Web-Based System

Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh

Abstract:

One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.

Keywords: software certification model, user centric approach, software quality factors, metrics and measurements, web-based system

Procedia PDF Downloads 405
9182 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 22
9181 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria

Authors: Salah Hadjout, Mohamed Zouidi

Abstract:

In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.

Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria

Procedia PDF Downloads 100
9180 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
9179 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
9178 The Pursuit of Marital Sustainability Inspiring by Successful Matrimony of Two Distinguishable Indonesian Ethnics as a Learning Process

Authors: Mutiara Amalina Khairisa, Purnama Arafah, Rahayu Listiana Ramli

Abstract:

In recent years, so many cases of divorce increasingly occur. Betrayal in form of infidelity, less communication one another, economically problems, selfishness of two sides, intervening parents from both sides which frequently occurs in Asia, especially in Indonesia, the differences of both principles and beliefs, “Sense of Romantism” depletion, role confict, a large difference in the purpose of marriage,and sex satisfaction are expected as the primary factors of the causes of divorce. Every couple of marriage wants to reach happy life in their family but severe problems brought about by either of those main factors come as a reasonable cause of failure marriage. The purpose of this study is to find out how marital adjustment and supporting factors in ensuring the success of that previous marital adjusment are inseparable two things assumed as a framework can affect the success in marriage becoming a resolution to reduce the desires to divorce. Those two inseparable things are able to become an aspect of learning from the success of the different ethnics marriage to keep holding on wholeness.

Keywords: marital adjustment, marital sustainability, learning process, successful ethnicity differences marriage, basical cultural values

Procedia PDF Downloads 432
9177 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder

Authors: Yu-Chi Chou

Abstract:

The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.

Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation

Procedia PDF Downloads 66
9176 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
9175 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study

Authors: Nir Wittenberg, Moshe Farhi

Abstract:

This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.

Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations

Procedia PDF Downloads 80
9174 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model

Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano

Abstract:

Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.

Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology

Procedia PDF Downloads 135
9173 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia

Authors: Arif Budiman

Abstract:

Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.

Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check

Procedia PDF Downloads 440
9172 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 81
9171 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement

Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo

Abstract:

This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.

Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement

Procedia PDF Downloads 83
9170 Assessment of the Validity of Sentiment Analysis as a Tool to Analyze the Emotional Content of Text

Authors: Trisha Malhotra

Abstract:

Sentiment analysis is a recent field of study that computationally assesses the emotional nature of a body of text. To assess its test-validity, sentiment analysis was carried out on the emotional corpus of text from a personal 15-day mood diary. Self-reported mood scores varied more or less accurately with daily mood evaluation score given by the software. On further assessment, it was found that while sentiment analysis was good at assessing ‘global’ mood, it was not able to ‘locally’ identify and differentially score synonyms of various emotional words. It is further critiqued for treating the intensity of an emotion as universal across cultures. Finally, the software is shown not to account for emotional complexity in sentences by treating emotions as strictly positive or negative. Hence, it is posited that a better output could be two (positive and negative) affect scores for the same body of text.

Keywords: analysis, data, diary, emotions, mood, sentiment

Procedia PDF Downloads 269
9169 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 544
9168 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 359
9167 Performance Assessment of Islamic Banks in the Light of Maqasid Al-Shariah

Authors: Asma Ammar

Abstract:

Being different in theory and practice from their conventional counterparts, this research aims to assess the performance of Islamic banks beyond the financial performance by emphasizing their ethical and social identity based on the higher purposes of Islamic law, namely Maqasid al-Shariah. Using Imam al-Ghazali’s theory of Maqasid al-Shariah and Sekaran’s (2000) method, we develop a Maqasid-based index including the five objectives of Shariah (preservation of life, religion, intellect, posterity, and wealth). Our sample covers 9 Islamic banks considered among the largest Islamic banks in the world. For the five years of study (2017-2021), our results reveal that the highest score is performed by Bank Muamalat while the least score is given to Dubai Islamic Bank. The overall Maqasid performance of the sample is unimpressive, indicating that there is a lack of achievement in Maqasid al-Shariah performance of Islamic banks. Consequently, serious measures should be taken by Islamic banks to improve their Maqasid performance and thus contribute effectively to the socio-economic development of the countries in which they operate.

Keywords: Maqasid al-Shariah, Maqasid al-Shariah index, Islamic banks, performance assessment

Procedia PDF Downloads 76
9166 Development of an Interactive Display-Control Layout Design System for Trains Based on Train Drivers’ Mental Models

Authors: Hyeonkyeong Yang, Minseok Son, Taekbeom Yoo, Woojin Park

Abstract:

Human error is the most salient contributing factor to railway accidents. To reduce the frequency of human errors, many researchers and train designers have adopted ergonomic design principles for designing display-control layout in rail cab. There exist a number of approaches for designing the display control layout based on optimization methods. However, the ergonomically optimized layout design may not be the best design for train drivers, since the drivers have their own mental models based on their experiences. Consequently, the drivers may prefer the existing display-control layout design over the optimal design, and even show better driving performance using the existing design compared to that using the optimal design. Thus, in addition to ergonomic design principles, train drivers’ mental models also need to be considered for designing display-control layout in rail cab. This paper developed an ergonomic assessment system of display-control layout design, and an interactive layout design system that can generate design alternatives and calculate ergonomic assessment score in real-time. The design alternatives generated from the interactive layout design system may not include the optimal design from the ergonomics point of view. However, the system’s strength is that it considers train drivers’ mental models, which can help generate alternatives that are more friendly and easier to use for train drivers. Also, with the developed system, non-experts in ergonomics, such as train drivers, can refine the design alternatives and improve ergonomic assessment score in real-time.

Keywords: display-control layout design, interactive layout design system, mental model, train drivers

Procedia PDF Downloads 306
9165 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale

Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin

Abstract:

A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.

Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale

Procedia PDF Downloads 131
9164 The Research about Environmental Assessment Index of Brownfield Redevelopment in Taiwan - A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch

Authors: Yang, Min-chih, Shih-Jen Feng, Bo-Tsang Li

Abstract:

The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land.

Keywords: brownfield, industrial land, redevelopment, assessment index

Procedia PDF Downloads 466
9163 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162
9162 Robot-Assisted Learning for Communication-Care in Autism Intervention

Authors: Syamimi Shamsuddin, Hanafiah Yussof, Fazah Akhtar Hanapiah, Salina Mohamed, Nur Farah Farhan Jamil, Farhana Wan Yunus

Abstract:

Robot-based intervention for children with autism is an evolving research niche in human-robot interaction (HRI). Recent studies in this area mostly covered the role of robots in the clinical and experimental setting. Our previous work had shown that interaction with a robot pose no adverse effects on the children. Also, the presence of the robot, together with specific modules of interaction was associated with less autistic behavior. Extending this impact on school-going children, interactions that are in-tune with special education lessons are needed. This methodological paper focuses on how a robot can be incorporated in a current learning environment for autistic children. Six interaction scenarios had been designed based on the existing syllabus to teach communication skills, using the Applied Behavior Analysis (ABA) technique as the framework. Development of the robotic experience in class also covers the required set-up involving participation from teachers. The actual research conduct involving autistic children, teachers and robot shall take place in the next phase.

Keywords: autism spectrum disorder, ASD, humanoid robot, communication skills, robot-assisted learning

Procedia PDF Downloads 367
9161 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147