Search results for: morphology detection
1852 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1261851 Digitalization in Aggregate Quarries
Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat
Abstract:
The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.Keywords: aggregates, artificial intelligence, automatization, mining operations
Procedia PDF Downloads 881850 Anatomy of the Human Mitral Valve Leaflets: Implications for Transcatheter and Surgical Mitral Valve Repair Techniques
Authors: Agata Krawczyk-Ozog, Mateusz K. Holda, Mateusz Koziej, Danuta Sorysz, Zbigniew Siudak, Wieslawa Klimek-Piotrowska, Dariusz Dudek
Abstract:
Introduction: Rapid development of the surgical and less-invasive percutaneous mitral valve repair procedures greatly increase the interest of the mitral valve anatomy. The aim of this study was to characterize morphological variability of the mitral valve leaflets and to provide the size of their particular parts. Materials and Methods: In the study, we included 200 autopsied human hearts from Caucasian individuals (25% females) with mean age 47.5 (±17.9) without any valvular diseases. The morphology of the mitral valve was evaluated. The intercommissural and aorto-mural diameters of the mitral annulus were measured. All leaflets and their scallops were identified. The base and the height of the posteromedial commissure (PM-C), anterolateral commissure (AL-C), anterior leaflet (AL) and posterior leaflet (PL) with their scallops were measured. Results: The intercommissural diameter was 28.0±4.8 mm, the aorto-mural diameter 19.7±4.8 mm, circumference of the mitral annulus 89.9±12.6 mm and the area of the mitral valve 485.4±171.4 mm2. Classical mitral valves (AL+AL-C+PL(P1,P2,P3)+PM-C) were found in 141 (70.5%) specimens. In classical type, the mean AL base and height were 30.8±4.9 mm and 20.6±4.2 mm, while mean PL base and height 45.1±8.2 mm 12.9±2.8 mm respectively. The mean ratio of the AL base to PL base was 0.7±0.2. Variations in PL were found in 55 (27.5%) and in AL in 5 (2.5%) hearts. The most common variations were: valve with one accessory scallop (AcS) between P3 and PM-C (7%); AcS between P1 and AL-C (4%); connections of P2 and P3 scallops (4%); connections of P1 and P2 scallops (3%); AcS in AL (2.5%). All AcS were smaller than the main PL scallops. The mean intertrigonal distance was 21.9±3.8 mm. Conclusions: In all cases, the mitral valve is built by two main leaflets with possible variants in secondary to leaflets scallops (29.5%). The variations are largely associated with PL and are mostly related to the presence of AcS. Anatomically the AL is not divided into scallops, and it occupies 34.5% of the mitral annulus circumference. Understanding the anatomy of the mitral valve leaflets helps to planning and performing mitral valve repair procedures.Keywords: accessory scallop, commissure, connected scallops, human heart, mitral leaflets, mitral valve
Procedia PDF Downloads 3891849 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating
Authors: Gizachew Belay Adugna
Abstract:
Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency
Procedia PDF Downloads 711848 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures
Authors: Amir Ali, Laura Yael Mendoza
Abstract:
The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.Keywords: cell culture, stevia, iron nanoparticles, antioxidants
Procedia PDF Downloads 961847 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers
Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui
Abstract:
Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening
Procedia PDF Downloads 1771846 Follicular Fluid Proteins and Cells Study on Small, Medium, and Large Follicles of Large White Pig
Authors: Mayuva Youngsabanant-Areekijseree, Chanikarn Srinark, S. Sengsai, Mayuree Pumipaiboon
Abstract:
Our project was aimed at morphology of oocytes, follicle cells and follicular fluid proteins study of Large White pig (at local slaughter house in Nakhon Pathom Province). The porcine oocytes and follicular fluid of healthy small follicles (1-2 mm), medium follicles (3-6 mm in diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected from the ovary by sterile technique. Then, the oocytes and the follicle cells were separated from the fluid. The oocytes were round shape and surrounded by zona pellucida with numerous layers of cumulus cells. Based on the number of cumulus cell layers surrounding oocytes, the oocytes were classified into 5 types, which were intact-, multi-, partial-cumulus layer oocyte, completely denuded oocyte and degenerative oocyte. The collected oocytes showed high percentages of intact- and multi- cumulus cell layers in the small follicles (53.48%) medium follicles (56.94%) and large follicles (56.52%) which have high potential to develop into mature oocytes in vitro. Proteins from follicular fluid of 3 size follicles were separated by SDS-PAGE and LC/MS/MS. The molecular weight of follicular fluid proteins from the small follicles were 24, 60-65, 79, 110, 140, 160, and > 220 kDa. Meanwhile, the follicular fluid protein from medium and large follicle contained 52, 65, 79, 90, 110, 120, 160, 190 and > 220 kDa. Almost all proteins played important roles in promoting and regulating growth and development of oocytes and ovulation. This finding was an initial tool for in vitro testing and applied biotechnology research. Acknowledgements: The project was funded by a grant from Silpakorn University Research & Development Institute (SURDI) and Faculty of Science, Silpakorn University, Thailand.Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE, reproductive biology
Procedia PDF Downloads 2351845 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection
Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor
Abstract:
Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing
Procedia PDF Downloads 2051844 A Radiofrequency Spectrophotometer Device to Detect Liquids in Gastroesophageal Ways
Authors: R. Gadea, J. M. Monzó, F. J. Puertas, M. Castro, A. Tebar, P. J. Fito, R. J. Colom
Abstract:
There exists a wide array of ailments impacting the structural soundness of the esophageal walls, predominantly linked to digestive issues. Presently, the techniques employed for identifying esophageal tract complications are excessively invasive and discomforting, subjecting patients to prolonged discomfort in order to achieve an accurate diagnosis. This study proposes the creation of a sensor with profound measuring capabilities designed to detect fluids coursing through the esophageal tract. The multi-sensor detection system relies on radiofrequency photospectrometry. During experimentation, individuals representing diverse demographics in terms of gender and age were utilized, positioning the sensors amidst the trachea and diaphragm and assessing measurements in vacuum conditions, water, orange juice, and saline solutions. The findings garnered enabled the identification of various liquid mediums within the esophagus, segregating them based on their ionic composition.Keywords: radiofrequency spectrophotometry, medical device, gastroesophageal disease, photonics
Procedia PDF Downloads 811843 Improved Pitch Detection Using Fourier Approximation Method
Authors: Balachandra Kumaraswamy, P. G. Poonacha
Abstract:
Automatic Music Information Retrieval has been one of the challenging topics of research for a few decades now with several interesting approaches reported in the literature. In this paper we have developed a pitch extraction method based on a finite Fourier series approximation to the given window of samples. We then estimate pitch as the fundamental period of the finite Fourier series approximation to the given window of samples. This method uses analysis of the strength of harmonics present in the signal to reduce octave as well as harmonic errors. The performance of our method is compared with three best known methods for pitch extraction, namely, Yin, Windowed Special Normalization of the Auto-Correlation Function and Harmonic Product Spectrum methods of pitch extraction. Our study with artificially created signals as well as music files show that Fourier Approximation method gives much better estimate of pitch with less octave and harmonic errors.Keywords: pitch, fourier series, yin, normalization of the auto- correlation function, harmonic product, mean square error
Procedia PDF Downloads 4131842 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers
Procedia PDF Downloads 2691841 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset
Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor
Abstract:
The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques
Procedia PDF Downloads 131840 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 4761839 The Early Pleistocene Mustelidae and Hyaena Record of the Yuanmou Basin
Authors: Arya Farjand
Abstract:
This study delves into the Early Pleistocene fauna of the Yuanmou Basin, highlighting two significant findings. The first is the discovery of exceptionally well-preserved canid coprolites, which provide a rare glimpse into the diet and ecological niche of these ancient carnivores. The analysis of these coprolites has revealed a diet rich in diverse prey species, suggesting a complex food web and a dynamic ecological environment. This discovery not only sheds light on the dietary habits of these canids but also offers broader insights into the region's ecological dynamics during the Early Pleistocene. Additionally, the preservation of these coprolites allows for detailed study of the carnivore's role in the ecosystem, including their interactions with other species and the overall health of the environment. The second major finding is the identification of a mustelid species, Eirictis yuanmouensis, from the same fossil horizon as the coprolites. This discovery is crucial for understanding the diversity and evolution of Mustelidae in the region. The detailed analysis of cranial and dental morphology of Eirictis yuanmouensis indicates unique adaptations that suggest a specialized ecological niche. This finding, in conjunction with the coprolite analysis, provides a comprehensive view of the ecological niches occupied by both mustelids and hyenas, enhancing our understanding of their adaptations and interactions within this paleoenvironment. The study's significance is further amplified by the analysis of pollen data from the same horizon, which indicates a paleoenvironment characterized by rapid climatic changes and a dominant semiarid climate. This combination of faunal and floral data paints a detailed picture of the Early Pleistocene environment in the Yuanmou Basin, offering valuable insights into the interactions between different carnivore species and their adaptation strategies in response to changing environmental conditions.Keywords: Yuanmou Basin, coprolite, Hyaena, eirictis yuanmouensis, early pleistocene
Procedia PDF Downloads 351838 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes
Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li
Abstract:
An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion
Procedia PDF Downloads 4071837 Use of Predictive Food Microbiology to Determine the Shelf-Life of Foods
Authors: Fatih Tarlak
Abstract:
Predictive microbiology can be considered as an important field in food microbiology in which it uses predictive models to describe the microbial growth in different food products. Predictive models estimate the growth of microorganisms quickly, efficiently, and in a cost-effective way as compared to traditional methods of enumeration, which are long-lasting, expensive, and time-consuming. The mathematical models used in predictive microbiology are mainly categorised as primary and secondary models. The primary models are the mathematical equations that define the growth data as a function of time under a constant environmental condition. The secondary models describe the effects of environmental factors, such as temperature, pH, and water activity (aw) on the parameters of the primary models, including the maximum specific growth rate and lag phase duration, which are the most critical growth kinetic parameters. The combination of primary and secondary models provides valuable information to set limits for the quantitative detection of the microbial spoilage and assess product shelf-life.Keywords: shelf-life, growth model, predictive microbiology, simulation
Procedia PDF Downloads 2121836 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 1401835 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai
Abstract:
In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU
Procedia PDF Downloads 1561834 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment
Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang
Abstract:
Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia
Procedia PDF Downloads 471833 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: string classification, data quality, feature selection, probability distribution, string length
Procedia PDF Downloads 3181832 Bacterial Interactions of Upper Respiratory Tract Microbiota
Authors: Sarah Almuhayya, Andrew Mcbain, Gavin Humphreys
Abstract:
Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups.Keywords: nasal, microbiota, S.aureus, microbioal interaction
Procedia PDF Downloads 1151831 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis
Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo
Abstract:
Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination
Procedia PDF Downloads 1451830 Structural Analysis of Polymer Thin Films at Single Macromolecule Level
Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii
Abstract:
The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy
Procedia PDF Downloads 2871829 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 1031828 A Passive Digital Video Authentication Technique Using Wavelet Based Optical Flow Variation Thresholding
Authors: R. S. Remya, U. S. Sethulekshmi
Abstract:
Detecting the authenticity of a video is an important issue in digital forensics as Video is used as a silent evidence in court such as in child pornography, movie piracy cases, insurance claims, cases involving scientific fraud, traffic monitoring etc. The biggest threat to video data is the availability of modern open video editing tools which enable easy editing of videos without leaving any trace of tampering. In this paper, we propose an efficient passive method for inter-frame video tampering detection, its type and location by estimating the optical flow of wavelet features of adjacent frames and thresholding the variation in the estimated feature. The performance of the algorithm is compared with the z-score thresholding and achieved an efficiency above 95% on all the tested databases. The proposed method works well for videos with dynamic (forensics) as well as static (surveillance) background.Keywords: discrete wavelet transform, optical flow, optical flow variation, video tampering
Procedia PDF Downloads 3601827 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan
Abstract:
It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic
Procedia PDF Downloads 2431826 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions
Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba
Abstract:
The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan
Procedia PDF Downloads 3091825 Use of Metallic and Bimetallic Nanostructures as Constituents of Active Bio-Based Films
Authors: Lina F. Ballesteros, Hafsae Lamsaf, Miguel A. Cerqueira, Lorenzo M. Pastrana, Sandra Carvalho, Jose A. Teixeira, S. Calderon V.
Abstract:
The use of bio-based packaging materials containing metallic and bimetallic nanostructures is relatively modern technology. In this sense, the food packaging industry has been investigating biological and renewable resources that can replace petroleum-based materials to reduce the environmental impact and, at the same time, including new functionalities using nanotechnology. Therefore, the main objective of the present work consisted of developing bio-based poly-lactic acid (PLA) films with Zinc (Zn) and Zinc-Iron (Zn-Fe) nanostructures deposited by magnetron sputtering. The structural, antimicrobial, and optical properties of the films were evaluated when exposed at 60% and 96% relative humidity (RH). The morphology and elemental analysis of the samples were determined by scanning (transmission) electron microscopy (SEM and STEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The structure of the PLA was monitored before and after deposition by Fourier transform infrared spectroscopy (FTIR) analysis, and the antimicrobial and color assays were performed by using the zone of inhibition (ZOI) test and a Minolta colorimeter, respectively. Finally, the films were correlated in terms of the deposit conditions, Zn or Zn-Fe concentrations, and thickness. The results revealed PLA films with different morphologies, compositions, and thicknesses of Zn or Zn-Fe nanostructures. The samples showed a significant antibacterial and antifungal activity against E. coli, P. aeruginosa, P. fluorescens, S. aureus, and A. niger, and considerable changes of color and opacity at 96% RH, especially for the thinner nanostructures (150-250 nm). On the other hand, when the Fe fraction was increased, the lightness of samples increased, as well as their antimicrobial activity when compared to the films with pure Zn. Hence, these findings are relevant to the food packaging field since intelligent and active films with multiple properties can be developed.Keywords: biopolymers, functional properties, magnetron sputtering, Zn and Zn-Fe nanostructures
Procedia PDF Downloads 1211824 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 1911823 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 69