Search results for: compound Poisson process
13199 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation
Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta
Abstract:
Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD
Procedia PDF Downloads 40013198 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology
Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar
Abstract:
This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decrease the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copy n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.Keywords: virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method
Procedia PDF Downloads 14913197 Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound
Authors: Dmitry Nosik, Nickolay Nosik, Elli Kaplina, Olga Lobach, Marina Chataeva, Lev Rasnetsov
Abstract:
Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection.Keywords: antiviral drug, human immunodeficiency virus (hiv), herpes simplex virus (hsv), mixed viral infection
Procedia PDF Downloads 34113196 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 13413195 Execution Time Optimization of Workflow Network with Activity Lead-Time
Authors: Xiaoping Qiu, Binci You, Yue Hu
Abstract:
The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network
Procedia PDF Downloads 17113194 The Importance of Analysis of Internal Quality Management Systems and Self-Examination Processes in Engineering Accreditation Processes
Authors: Wilfred Fritz
Abstract:
The accreditation process of engineering degree programmes is based on various reports evaluated by the relevant governing bodies of the institution of higher education. One of the aforementioned reports for the accreditation process is a self-assessment report which is to be completed by the applying institution. This paper seeks to emphasise the importance of analysis of internal quality management systems and self-examination processes in the engineering accreditation processes. A description of how the programme fulfils the criteria should be given. Relevant stakeholders all need to contribute in the writing and structuring of the self-assessment report. The last step is to gather evidence in the form of supporting documentation. In conclusion, the paper also identifies learning outcomes in a case study in seeking accreditation from an international relevant professional body.Keywords: accreditation, governing bodies, self-assessment report, quality management
Procedia PDF Downloads 12213193 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 40113192 Representation of Master–Disciple Relationship in Rumi’s Poems: Spirituality Vis-A-Vis Collective Consciousness
Authors: Nodi Islam
Abstract:
This paper critically reads Rumi’s poems in The Masnavi (Book One) and the philosophy of master-disciple relationship, as reflected as a medium to attain the higher consciousness in the poems which is considered as spiritual by the Sufi practitioners. This paper further applies the concept of collective consciousness introduced by Durkheim, which stands for a set of beliefs, ideas, moral attitudes that operate as a unifying force in a certain society, in reading Rumi’s poems. According to Sufi philosophy, in order to reach to the beloved who is the Higher Being, a lover has to be a disciple of a master and dedicate himself completely even if it means to give up the earthly desires. When the process is completed, he achieves the divinity which is the utmost happiness to be one with the beloved. As this process is considered spiritual by the Sufi practitioners, this paper suggests that, apart from being spiritual, this is a reflection of collective consciousness also. This process plays a part to construct the collectivity as a means to create masters and disciples. Collective consciousness operates in this particular belief system of Sufis who tend to follow this phenomenon as a rule of obedience and accepts the rule because this is how their particular community proceeds on. This paper offers a view of Rumi’s poems which reflect such relationship and tends to offer a general discussion on the hegemonic approach of the Sufi society especially of the Mevlevi order. Finally, this paper offers a constructive representation of Mevlevi society based upon the idea of spirituality which could be an outcome of psychological and social issues and practices.Keywords: collective consciousness, divinity, master-disciple relationship, Mevlevi order
Procedia PDF Downloads 17013191 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support
Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi
Abstract:
The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools
Procedia PDF Downloads 12113190 Non-Singular Gravitational Collapse of a Dust Cloud in Einstein-Cartan Theory
Authors: Amir Hadi Ziaie, Mostafa Hashemi, Shahram Jalalzadeh
Abstract:
It is now known that the end state of the collapse process of a dense star under its own gravity is the formation of a spacetime singularity. This is the spacetime event where the energy density and spacetime curvature diverge, and the classical general relativity breaks down. As we know, a realistic star is composed of fermions so that their spin effects could alter the final fate of the collapse scenario. The underlying theory within which the inclusion of spin effects can be worked out is the Einstein-Cartan theory. In this theory, the spacetime torsion which is defined as a geometrical quantity, is related to an intrinsic angular momentum of fermions (spin). In this work, we study the collapse process of a homogeneous spin fluid in such a framework and show that taking into account the spin effects of the collapsing cloud could prevent the formation of spacetime singularity.Keywords: gravitational collapse, einstein-cartan theory, spacetime singularity, black hole physics
Procedia PDF Downloads 39413189 Process Safety Management Digitalization via SHEQTool based on Occupational Safety and Health Administration and Center for Chemical Process Safety, a Case Study in Petrochemical Companies
Authors: Saeed Nazari, Masoom Nazari, Ali Hejazi, Siamak Sanoobari Ghazi Jahani, Mohammad Dehghani, Javad Vakili
Abstract:
More than ever, digitization is an imperative for businesses to keep their competitive advantages, foster innovation and reduce paperwork. To design and successfully implement digital transformation initiatives within process safety management system, employees need to be equipped with the right tool, frameworks, and best practices. we developed a unique full stack application so-called SHEQTool which is entirely dynamic based on our extensive expertise, experience, and client feedback to help business processes particularly operations safety management. We use our best knowledge and scientific methodologies published by CCPS and OSHA Guidelines to streamline operations and integrated them into task management within Petrochemical Companies. We digitalize their main process safety management system elements and their sub elements such as hazard identification and risk management, training and communication, inspection and audit, critical changes management, contractor management, permit to work, pre-start-up safety review, incident reporting and investigation, emergency response plan, personal protective equipment, occupational health, and action management in a fully customizable manner with no programming needs for users. We review the feedback from main actors within petrochemical plant which highlights improving their business performance and productivity as well as keep tracking their functions’ key performance indicators (KPIs) because it; 1) saves time, resources, and costs of all paperwork on our businesses (by Digitalization); 2) reduces errors and improve performance within management system by covering most of daily software needs of the organization and reduce complexity and associated costs of numerous tools and their required training (One Tool Approach); 3) focuses on management systems and integrate functions and put them into traceable task management (RASCI and Flowcharting); 4) helps the entire enterprise be resilient to any change of your processes, technologies, assets with minimum costs (through Organizational Resilience); 5) reduces significantly incidents and errors via world class safety management programs and elements (by Simplification); 6) gives the companies a systematic, traceable, risk based, process based, and science based integrated management system (via proper Methodologies); 7) helps business processes complies with ISO 9001, ISO 14001, ISO 45001, ISO 31000, best practices as well as legal regulations by PDCA approach (Compliance).Keywords: process, safety, digitalization, management, risk, incident, SHEQTool, OSHA, CCPS
Procedia PDF Downloads 6313188 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods
Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie
Abstract:
The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence
Procedia PDF Downloads 24713187 The Effect of Engineering Construction in Online Consultancy
Authors: Mariam Wagih Nagib Eskandar
Abstract:
The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations
Procedia PDF Downloads 7813186 A Sensor Placement Methodology for Chemical Plants
Authors: Omid Ataei Nia, Karim Salahshoor
Abstract:
In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter
Procedia PDF Downloads 15813185 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges
Authors: Ionel Botef
Abstract:
Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.Keywords: aerospace, aging aircraft, cold spray, materials
Procedia PDF Downloads 11713184 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry
Authors: F. Yildiz, S. Y. Oturanc
Abstract:
Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera
Procedia PDF Downloads 41013183 Contractor Selection by Using Analytical Network Process
Authors: Badr A. Al-Jehani
Abstract:
Nowadays, contractor selection is a critical activity of the project owner. Selecting the right contractor is essential to the project manager for the success of the project, and this cab happens by using the proper selecting method. Traditionally, the contractor is being selected based on his offered bid price. This approach focuses only on the price factor and forgetting other essential factors for the success of the project. In this research paper, the Analytic Network Process (ANP) method is used as a decision tool model to select the most appropriate contractor. This decision-making method can help the clients who work in the construction industry to identify contractors who are capable of delivering satisfactory outcomes. Moreover, this research paper provides a case study of selecting the proper contractor among three contractors by using ANP method. The case study identifies and computes the relative weight of the eight criteria and eleven sub-criteria using a questionnaire.Keywords: contractor selection, project management, decision-making, bidding
Procedia PDF Downloads 8713182 Multifunctional Bending and Straightening Machines for Shipbuilding
Authors: V. Yu. Shungin, A. V. Popov
Abstract:
At present, one of the main tasks of Russian shipbuilding yards is implementation of new technologies and replacement of main process equipment. In particular, conventional bending technologies with dies are being replaced with resource-saving methods of rotation (roller) banding. Such rolling bending is performed by multiple rolling of a plat in special bending rollers. Studies, conducted in JSC SSTC, allowed developing a theory of rotation bending, methods for calculation of process parameters, requirements to roller presses and bending accessories. This technology allows replacing old and expensive presses with new cheaper roller ones, having less power consumption and bending force. At first, roller presses were implemented in ship repair, however now they are widely employed at major shipbuilding yards. JSC SSTC develops bending technology and carries out design, manufacturing and delivery of roller presses.Keywords: bending/straightening machines, rotational bending, ship hull structures, multifunctional bending
Procedia PDF Downloads 57513181 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions
Authors: Prashant S. Humnabad
Abstract:
The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.Keywords: FEA, thermal analysis, preheating, friction stir welding
Procedia PDF Downloads 18813180 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy
Authors: Jian Yu
Abstract:
Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process
Procedia PDF Downloads 18813179 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption
Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout
Abstract:
The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob
Procedia PDF Downloads 27513178 Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model
Authors: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Jan Jäckel, Andreas Gebauer-Teichmann
Abstract:
This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper.Keywords: CFD, fluid-structure interaction, high-pressure die casting, multiphase flow
Procedia PDF Downloads 33113177 E-Learning in Life-Long Learning: Best Practices from the University of the Aegean
Authors: Chryssi Vitsilaki, Apostolos Kostas, Ilias Efthymiou
Abstract:
This paper presents selected best practices on online learning and teaching derived from a novel and innovating Lifelong Learning program through e-Learning, which has during the last five years been set up at the University of the Aegean in Greece. The university, capitalizing on an award-winning, decade-long experience in e-learning and blended learning in undergraduate and postgraduate studies, recently expanded into continuous education and vocational training programs in various cutting-edge fields. So, in this article we present: (a) the academic structure/infrastructure which has been developed for the administrative, organizational and educational support of the e-Learning process, including training the trainers, (b) the mode of design and implementation based on a sound pedagogical framework of open and distance education, and (c) the key results of the assessment of the e-learning process by the participants, as they are used to feedback on continuous organizational and teaching improvement and quality control.Keywords: distance education, e-learning, life-long programs, synchronous/asynchronous learning
Procedia PDF Downloads 33313176 Collaboration between Dietician and Occupational Therapist, Promotes Independent Functional Eating in Tube Weaning Process of Mechanical Ventilated Patients
Authors: Inbal Zuriely, Yonit Weiss, Hilla Zaharoni, Hadas Lewkowicz, Tatiana Vander, Tarif Bader
Abstract:
early active movement, along with adjusting optimal nutrition, prevents aggravation of muscle degeneracy and functional decline. Eating is a basic activity of daily life, which reflects the patient's independence. When eating and feeding are experienced successfully, they lead to a sense of pleasure and satisfaction. However, when they are experienced as a difficulty, they might evoke feelings of helplessness and frustration. This stresses the essential process of gradual weaning off the enteral feeding tube. the work describes the collaboration of a dietitian, determining the nutritional needs of patients undergoing enteral tube weaning as part of the rehabilitation process, with the suited treatment of an occupational therapist. Occupational therapy intervention regarding eating capabilities focuses on improving the required motor and cognitive components, along with environmental adjustments and aids, imparting eating strategies and training to patients and their families. The project was conducted in the long-term, ventilated patients’ department at the Herzfeld Rehabilitation Geriatric Medical Center on patients undergoing enteral tube weaning with the staff’s assistance. Establishing continuous collaboration between the dietician and the occupational therapist, starting from the beginning of the feeding-tube weaning process: 1.The dietician updates the occupational therapist about the start of the process and the approved diet. 2.The occupational therapist performs cognitive, motor, and functional assessments and treatments regarding the patient’s eating capabilities and recommends the required adjustments for independent eating according to the FIM (Functional Independence Measure) scale. 3.The occupational therapist closely follows up on the patient’s degree of independence in eating and provides a repeated update to the dietician. 4.The dietician accordingly guides the ward staff on whether and how to feed the patient or allow independent eating. The project aimed to promote patients toward independent feeding, which leads to a sense of empowerment, enjoyment of the eating experience, and progress of functional ability, along with performing active movements that will motivate mobilization. From the beginning of 2022, 26 patients participated in the project. 79% of all patients who started the weaning process from tube feeding achieved different levels of independence in feeding (independence levels ranged from supervision (FIM-5) to complete independence (FIM-7). The integration of occupational therapy and dietary treatment is based on a patient-centered approach while considering the patient’s personal needs, preferences, and goals. This interdisciplinary partnership is essential for meeting the complex needs of prolonged mechanically ventilated patients and promotes independent functioning and quality of life.Keywords: dietary, mechanical ventilation, occupational therapy, tube feeding weaning
Procedia PDF Downloads 7713175 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System
Authors: Christian Luarca
Abstract:
The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.Keywords: cloud platform, e-Training, efficiency, onboarding
Procedia PDF Downloads 14913174 Anti-Infective Potential of Selected Philippine Medicinal Plant Extracts against Multidrug-Resistant Bacteria
Authors: Demetrio L. Valle Jr., Juliana Janet M. Puzon, Windell L. Rivera
Abstract:
From the various medicinal plants available in the Philippines, crude ethanol extracts of twelve (12) Philippine medicinal plants, namely: Senna alata L. Roxb. (akapulko), Psidium guajava L. (bayabas), Piper betle L. (ikmo), Vitex negundo L. (lagundi), Mitrephora lanotan (Blanco) Merr. (Lanotan), Zingiber officinale Roscoe (luya), Curcuma longa L. (Luyang dilaw), Tinospora rumphii Boerl (Makabuhay), Moringga oleifera Lam. (malunggay), Phyllanthus niruri L. (sampa-sampalukan), Centella asiatica (L.) Urban (takip kuhol), and Carmona retusa (Vahl) Masam (tsaang gubat) were studied. In vitro methods of evaluation against selected Gram-positive and Gram-negative multidrug-resistant (MDR), bacteria were performed on the plant extracts. Although five of the plants showed varying antagonistic activities against the test organisms, only Piper betle L. exhibited significant activities against both Gram-negative and Gram-positive multidrug-resistant bacteria, exhibiting wide zones of growth inhibition in the disk diffusion assay, and with the lowest concentrations of the extract required to inhibit the growth of the bacteria, as supported by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Further antibacterial studies of the Piper betle L. leaf, obtained by three extraction methods (ethanol, methanol, supercritical CO2), revealed similar inhibitory activities against a multitude of Gram-positive and Gram-negative MDR bacteria. Thin layer chromatography (TLC) assay of the leaf extract revealed a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV-366 nm. TLC- agar overlay bioautography of the isolated compounds showed the compounds with Rf values of 0.86 and 0.13 having inhibitory activities against Gram-positive MDR bacteria (MRSA and VRE). The compound with an Rf value of 0.86 also possesses inhibitory activity against Gram-negative MDR bacteria (CRE Klebsiella pneumoniae and MBL Acinetobacter baumannii). Gas Chromatography-Mass Spectrometry (GC-MS) was able to identify six volatile compounds, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include 4-(2-propenyl)phenol and eugenol; and the new four compounds were ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, and 3-fluoro-2-propynenitrite. Phytochemical screening and investigation of its antioxidant, cytotoxic, possible hemolytic activities, and mechanisms of antibacterial activity were also done. The results showed that the local variant of Piper betle leaf extract possesses significant antioxidant, anti-cancer and antimicrobial properties, attributed to the presence of bioactive compounds, particularly of flavonoids (condensed tannin, leucoanthocyanin, gamma benzopyrone), anthraquinones, steroids/triterpenes and 2-deoxysugars. Piper betle L. is also traditionally known to enhance wound healing, which could be primarily due to its antioxidant, anti-inflammatory and antimicrobial activities. In vivo studies on mice using 2.5% and 5% of the ethanol leaf extract cream formulations in the excised wound models significantly increased the process of wound healing in the mice subjects, the results and values of which are at par with the current antibacterial cream (Mupirocin). From the results of the series of studies, we have definitely proven the value of Piper betle L. as a source of bioactive compounds that could be developed into therapeutic agents against MDR bacteria.Keywords: Philippine herbal medicine, multidrug-resistant bacteria, Piper betle, TLC-bioautography
Procedia PDF Downloads 76513173 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows
Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican
Abstract:
This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.Keywords: laboratory-process, optimization, pathology, computer simulation, workflow
Procedia PDF Downloads 28513172 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then, the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.Keywords: contractor selection, Libyan construction industry, decision experts, Delphi technique
Procedia PDF Downloads 33113171 Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle
Authors: Tadeus Atraskevic, Asch Dalbajobas, Mazahistas Pukuotukas
Abstract:
The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments.Keywords: laser, boson, ferroelectrics, mean field theory
Procedia PDF Downloads 17213170 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation
Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly
Abstract:
A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)
Procedia PDF Downloads 172