Search results for: Rule Based Architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29729

Search results for: Rule Based Architecture

26729 A Model of Empowerment Evaluation of Knowledge Management in Private Banks Using Fuzzy Inference System

Authors: Nazanin Pilevari, Kamyar Mahmoodi

Abstract:

The purpose of this research is to provide a model based on fuzzy inference system for evaluating empowerment of Knowledge management. The first prototype of the research was developed based on the study of literature. In the next step, experts were provided with these models and after implementing consensus-based reform, the views of Fuzzy Delphi experts and techniques, components and Index research model were finalized. Culture, structure, IT and leadership were considered as dimensions of empowerment. Then, In order to collect and extract data for fuzzy inference system based on knowledge and Experience, the experts were interviewed. The values obtained from designed fuzzy inference system, made review and assessment of the organization's empowerment of Knowledge management possible. After the design and validation of systems to measure indexes ,empowerment of Knowledge management and inputs into fuzzy inference) in the AYANDEH Bank, a questionnaire was used. In the case of this bank, the system output indicates that the status of empowerment of Knowledge management, culture, organizational structure and leadership are at the moderate level and information technology empowerment are relatively high. Based on these results, the status of knowledge management empowerment in AYANDE Bank, was moderate. Eventually, some suggestions for improving the current situation of banks were provided. According to studies of research history, the use of powerful tools in Fuzzy Inference System for assessment of Knowledge management and knowledge management empowerment such an assessment in the field of banking, are the innovation of this Research.

Keywords: knowledge management, knowledge management empowerment, fuzzy inference system, fuzzy Delphi

Procedia PDF Downloads 361
26728 Strategic Entrepreneurship: Model Proposal for Post-Troika Sustainable Cultural Organizations

Authors: Maria Inês Pinho

Abstract:

Recent literature on issues of Cultural Management (also called Strategic Management for cultural organizations) systematically seeks for models that allow such equipment to adapt to the constant change that occurs in contemporary societies. In the last decade, the world, and in particular Europe has experienced a serious financial problem that has triggered defensive mechanisms, both in the direction of promoting the balance of public accounts and in the sense of the anonymous loss of the democratic and cultural values of each nation. If in the first case emerged the Troika that led to strong cuts in funding for Culture, deeply affecting those organizations; in the second case, the commonplace citizen is seen fighting for the non-closure of cultural equipment. Despite this, the cultural manager argues that there is no single formula capable of solving the need to adapt to change. In another way, it is up to this agent to know the existing scientific models and to adapt them in the best way to the reality of the institution he coordinates. These actions, as a rule, are concerned with the best performance vis-à-vis external audiences or with the financial sustainability of cultural organizations. They forget, therefore, that all this mechanics cannot function without its internal public, without its Human Resources. The employees of the cultural organization must then have an entrepreneurial posture - must be intrapreneurial. This paper intends to break this form of action and lead the cultural manager to understand that his role should be in the sense of creating value for society, through a good organizational performance. This is only possible with a posture of strategic entrepreneurship. In other words, with a link between: Cultural Management, Cultural Entrepreneurship and Cultural Intrapreneurship. In order to prove this assumption, the case study methodology was used with the symbol of the European Capital of Culture (Casa da Música) as well as qualitative and quantitative techniques. The qualitative techniques included the procedure of in-depth interviews to managers, founders and patrons and focus groups to public with and without experience in managing cultural facilities. The quantitative techniques involved the application of a questionnaire to middle management and employees of Casa da Música. After the triangulation of the data, it was proved that contemporary management of cultural organizations must implement among its practices, the concept of Strategic Entrepreneurship and its variables. Also, the topics which characterize the Cultural Intrapreneurship notion (job satisfaction, the quality in organizational performance, the leadership and the employee engagement and autonomy) emerged. The findings show then that to be sustainable, a cultural organization should meet the concerns of both external and internal forum. In other words, it should have an attitude of citizenship to the communities, visible on a social responsibility and a participatory management, only possible with the implementation of the concept of Strategic Entrepreneurship and its variable of Cultural Intrapreneurship.

Keywords: cultural entrepreneurship, cultural intrapreneurship, cultural organizations, strategic management

Procedia PDF Downloads 183
26727 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation

Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim

Abstract:

This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.

Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement

Procedia PDF Downloads 513
26726 Theoretical Exploration for the Impact of Accounting for Special Methods in Connectivity-Based Cohesion Measurement

Authors: Jehad Al Dallal

Abstract:

Class cohesion is a key object-oriented software quality attribute that is used to evaluate the degree of relatedness of class attributes and methods. Researchers have proposed several class cohesion measures. However, the effect of considering the special methods (i.e., constructors, destructors, and access and delegation methods) in cohesion calculation is not thoroughly theoretically studied for most of them. In this paper, we address this issue for three popular connectivity-based class cohesion measures. For each of the considered measures we theoretically study the impact of including or excluding special methods on the values that are obtained by applying the measure. This study is based on analyzing the definitions and formulas that are proposed for the measures. The results show that including/excluding special methods has a considerable effect on the obtained cohesion values and that this effect varies from one measure to another. For each of the three connectivity-based measures, the proposed theoretical study recommended excluding the special methods in cohesion measurement.

Keywords: object-oriented class, software quality, class cohesion measure, class cohesion, special methods

Procedia PDF Downloads 297
26725 Assessment of Breeding Soundness by Comparative Radiography and Ultrasonography of Rabbit Testes

Authors: Adenike O. Olatunji-Akioye, Emmanual B Farayola

Abstract:

In order to improve the animal protein recommended daily intake of Nigerians, there is an upsurge in breeding of hitherto shunned food animals one of which is the rabbit. Radiography and ultrasonography are tools for diagnosing disease and evaluating the anatomical architecture of parts of the body non-invasively. As the rabbit is becoming a more important food animal, to achieve improved breeding of these animals, the best of the species form a breeding stock and will usually depend on breeding soundness which may be evaluated by assessment of the male reproductive organs by these tools. Four male intact rabbits weighing between 1.2 to 1.5 kg were acquired and acclimatized for 2 weeks. Dorsoventral views of the testes were acquired using a digital radiographic machine and a 5 MHz portable ultrasound scanner was used to acquire images of the testes in longitudinal, sagittal and transverse planes. Radiographic images acquired revealed soft tissue images of the testes in all rabbits. The testes lie in individual scrotal sacs sides on both sides of the midline at the level of the caudal vertebrae and thus are superimposed by caudal vertebrae and the caudal limits of the pelvic girdle. The ultrasonographic images revealed mostly homogenously hypoechogenic testes and a hyperechogenic mediastinum testis. The dorsal and ventral poles of the testes were heterogeneously hypoechogenic and correspond to the epididymis and spermatic cord. The rabbit is unique in the ability to retract the testes particularly when stressed and so careful and stressless handling during the procedures is of paramount importance. The imaging of rabbit testes can be safely done using both imaging methods but ultrasonography is a better method of assessment and evaluation of soundness for breeding.

Keywords: breeding soundness, rabbit, radiography, ultrasonography

Procedia PDF Downloads 134
26724 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert Höttger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis

Procedia PDF Downloads 622
26723 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework

Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai

Abstract:

A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.

Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model

Procedia PDF Downloads 458
26722 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 134
26721 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability

Procedia PDF Downloads 234
26720 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 196
26719 Calculating Ventricle’s Area Based on Clinical Dementia Rating Values on Coronal MRI Image

Authors: Retno Supriyanti, Ays Rahmadian Subhi, Yogi Ramadhani, Haris B. Widodo

Abstract:

Alzheimer is one type of disease in the elderly that may occur in the world. The severity of the Alzheimer can be measured using a scale called Clinical Dementia Rating (CDR) based on a doctor's diagnosis of the patient's condition. Currently, diagnosis of Alzheimer often uses MRI machine, to know the condition of part of the brain called Hippocampus and Ventricle. MRI image itself consists of 3 slices, namely Coronal, Sagittal and Axial. In this paper, we discussed the measurement of the area of the ventricle especially in the Coronal slice based on the severity level referring to the CDR value. We use Active Contour method to segment the ventricle’s region, therefore that ventricle’s area can be calculated automatically. The results show that this method can be used for further development in the automatic diagnosis of Alzheimer.

Keywords: Alzheimer, CDR, coronal, ventricle, active contour

Procedia PDF Downloads 268
26718 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming

Authors: Rui Li, Min Wen, Kim Bang Salling

Abstract:

For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.

Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance

Procedia PDF Downloads 447
26717 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: connectivism, learning analytics, lifelong learning, social semantic web

Procedia PDF Downloads 217
26716 Comparing the Efficacy of Minimally Supervised Home-Based and Closely Supervised Gym Based Exercise Programs on Weight Reduction and Insulin Resistance after Bariatric Surgery

Authors: Haleh Dadgostar, Sara Kaviani, Hanieh Adib, Ali Mazaherinezhad, Masoud Solaymani-Dodaran, Fahimeh Soheilipour, Abdolreza Pazouki

Abstract:

Background and Objectives: Effectiveness of various exercise protocols in weight reduction after bariatric surgery has not been sufficiently explored in the literature. We compared the effect of minimally supervised home-based and closely supervised Gym based exercise programs on weight reduction and insulin resistance after bariatric surgery. Methods: Women undergoing gastric bypass surgery were invited to participate in an exercise program and were randomly allocated into two groups. They were either offered a minimally supervised home-based (MSHB) or closely supervised Gym-based (CSGB) exercise program. The CSGB protocol constitute two sessions per week of training under ACSM guidelines. In the MSHB protocol participants received a notebook containing a list of recommended aerobic and resistance exercises, a log to record their activity and a schedule of follow up phone calls and clinic visits. Both groups received a pedometer. We measured their weight, BMI, lipid profile, FBS, and insulin level at the baseline and after 20 weeks of exercise and were compared at the end of the study. Results: A total of 80 patients completed our study (MSHB=38 and CSGB=42). The baseline comparison showed that the two groups are similar. Using the ANCOVA method of analysis the mean change in BMI (covariate: BMI at the beginning of the study) was slightly better in CSGB compared with the MSHB (between-group mean difference: 3.33 (95%CI 4.718 to 1.943, F: 22.844 p < 0.001)). Conclusion: Our results showed that both MSHB and CSGB exercise methods are somewhat equally effective in improvement of studied factors in the two groups. With considerably lower costs of Minimally Supervised Home Based exercise programs, these methods should be considered when adequate funding are not available.

Keywords: postoperative exercise, insulin resistance, bariatric surgery, morbid obesity

Procedia PDF Downloads 291
26715 Exploration of Two Selected Sculptural Forms in the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, Nigeria as Motifs for Wax Print Pattern and Design

Authors: Adeoti Adebowale, Abduljaleel, Ejiogu Fidelis Onyekwo

Abstract:

Form and image development are fundamental to creative expression in visual arts. The form is an element that distinguishes the difference between two-dimension and three-dimension among the branches of visual arts. Particularly, the sculpture is a three-dimensional form, while the textile design is a two-dimensional form of its visual appearance. The visual expression of each of them is embedded in the creative practice of the artist, which is easily understood and interpreted by the viewer. In this research, an attempt is made to explore and analyse sculptural forms adopted as a motif for wax print in textile design, aiming at breeding yet another pattern and motif suitable for various design uses. For instance, the dynamics of sculptural form adaptation into other areas of creativity, such as architecture, pictorial arts and pottery, as well as automobile bodies, is a discernible image everywhere. The research is studio exploratory, while a camera and descriptive analysis were used to process the data. Two sculptural forms were adopted from the Department of Fine and Applied Arts, Federal Capital Territory College of Education Zuba-Abuja, in this study due to the uniqueness of their technique of execution. The findings resulted in ten (10) paper designs showing the dexterity of studio practice in the development of design for various fashion and textile uses. However, the paper concludes that sculptural form is a source of inspiration for generating design concepts for a textile designer.

Keywords: exploration, design, motifs, sculptural forms, wax print

Procedia PDF Downloads 71
26714 The Politics of Foreign Direct Investment for Socio-Economic Development in Nigeria: An Assessment of the Fourth Republic Strategies (1999 - 2014)

Authors: Muritala Babatunde Hassan

Abstract:

In the contemporary global political economy, foreign direct investment (FDI) is gaining currency on daily basis. Notably, the end of the Cold War has brought about the dominance of neoliberal ideology with its mantra of private-sector-led economy. As such, nation-states now see FDI attraction as an important element in their approach to national development. Governments and policy makers are preoccupying themselves with unraveling the best strategies to not only attract more FDI but also to attain the desired socio-economic development status. In Nigeria, the perceived development potentials of FDI have brought about aggressive hunt for foreign investors, most especially since transition to civilian rule in May 1999. Series of liberal and market oriented strategies are being adopted not only to attract foreign investors but largely to stimulate private sector participation in the economy. It is on this premise that this study interrogates the politics of FDI attraction for domestic development in Nigeria between 1999 and 2014, with the ultimate aim of examining the nexus between regime type and the ability of a state to attract and benefit from FDI. Building its analysis within the framework of institutional utilitarianism, the study posits that the essential FDI strategies for achieving the greatest happiness for the greatest number of Nigerians are political not economic. Both content analysis and descriptive survey methodology were employed in carrying out the study. Content analysis involves desk review of literatures that culminated in the development of the study’s conceptual and theoretical framework of analysis. The study finds no significant relationship between transition to democracy and FDI inflows in Nigeria, as most of the attracted investments during the period of the study were market and resource seeking as was the case during the military regime, thereby contributing minimally to the socio-economic development of the country. It is also found that the country placed much emphasis on liberalization and incentives for FDI attraction at the neglect of improving the domestic investment environment. Consequently, poor state of infrastructure, weak institutional capability and insecurity were identified as the major factors seriously hindering the success of Nigeria in exploiting FDI for domestic development. Given the reality of the currency of FDI as a vector of economic globalization and that Nigeria is trailing the line of private-sector-led approach to development, it is recommended that emphasis should be placed on those measures aimed at improving the infrastructural facilities, building solid institutional framework, enhancing skill and technological transfer and coordinating FDI promotion activities by different agencies and at different levels of government.

Keywords: foreign capital, politics, socio-economic development, FDI attraction strategies

Procedia PDF Downloads 167
26713 Inclusive Cities Decision Matrix Based on a Multidimensional Approach for Sustainable Smart Cities

Authors: Madhurima S. Waghmare, Shaleen Singhal

Abstract:

The concept of smartness, inclusion, sustainability is multidisciplinary and fuzzy, rooted in economic and social development theories and policies which get reflected in the spatial development of the cities. It is a challenge to convert these concepts from aspirations to transforming actions. There is a dearth of assessment and planning tools to support the city planners and administrators in developing smart, inclusive, and sustainable cities. To address this gap, this study develops an inclusive cities decision matrix based on an exploratory approach and using mixed methods. The matrix is soundly based on a review of multidisciplinary urban sector literature and refined and finalized based on inputs from experts and insights from case studies. The application of the decision matric on the case study cities in India suggests that the contemporary planning tools for cities need to be multidisciplinary and flexible to respond to the unique needs of the diverse contexts. The paper suggests that a multidimensional and inclusive approach to city planning can play an important role in building sustainable smart cities.

Keywords: inclusive-cities decision matrix, smart cities in India, city planning tools, sustainable cities

Procedia PDF Downloads 157
26712 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models

Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur

Abstract:

In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.

Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity

Procedia PDF Downloads 70
26711 Nascent Federalism in Nepal: An Observational Review in its Evolution

Authors: C. Shekhar Parajulee

Abstract:

Nepal practiced a centralized unitary governing system for a long and has gone through the federal system after the promulgation of the new constitution on 20 September 2015. There is a big paradigm shift in terms of governance after it. Now, there are three levels of governments, one federal government in the center, seven provincial governments and 753 local governments. Federalism refers to a political governing system with multiple tiers of government working together with coordination. It is preferred for self and shared rule. Though it has opened the door for rights of the people, political stability, state restructuring, and sustainable peace and development, there are many prospects and challenges for its proper implementation. This research analyzes the discourses of federalism implementation in Nepal with special reference to one of seven provinces, Gandaki. Federalism is a new phenomenon in Nepali politics and informed debates on it are required for its right evolution. This research will add value in this regard. Moreover, tracking its evolution and the exploration of the attitudes and behaviors of key actors and stakeholders in a new experiment of a new governing system is also important. The administrative and political system of Gandaki province in terms of service delivery and development will critically be examined. Besides demonstrating the performances of the provincial government and assembly, it will analyze the inter-governmental relation of Gandaki with the other two tiers of government. For this research, people from provincial and local governments (elected representatives and government employees), provincial assembly members, academicians, civil society leaders and journalists are being interviewed. The interview findings will be analyzed by supplementing with published documents. Just going into the federal structure is not the solution. As in the case of other provincial governments, Gandaki had also to start from scratch. It gradually took a shape of government and has been functioning sluggishly. The provincial government has many challenges ahead, which has badly hindered its plans and actions. Additionally, fundamental laws, infrastructures and human resources are found to be insufficient at the sub-national level. Lack of clarity in the jurisdiction is another main challenge. The Nepali Constitution assumes cooperation, coexistence and coordination as the fundamental principles of federalism which, unfortunately, appear to be lacking among the three tiers of government despite their efforts. Though the devolution of power to sub-national governments is essential for the successful implementation of federalism, it has apparently been delayed due to the centralized mentality of bureaucracy as well as a political leader. This research will highlight the reasons for the delay in the implementation of federalism. There might be multiple underlying reasons for the slow pace of implementation of federalism and identifying them is very tough. Moreover, the federal spirit is found to be absent in the main players of today's political system, which is a big irony. So, there are some doubts about whether the federal system in Nepal is just a keepsake or a substantive.

Keywords: federalism, inter-governmental relations, Nepal, provincial government

Procedia PDF Downloads 191
26710 Development of Medical Intelligent Process Model Using Ontology Based Technique

Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu

Abstract:

An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.

Keywords: ontology-based, model, database, OOADM, healthcare

Procedia PDF Downloads 80
26709 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 115
26708 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach

Procedia PDF Downloads 99
26707 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 250
26706 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 425
26705 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: Elif Bakkaloglu, Necdet Torunbalci

Abstract:

The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.

Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems

Procedia PDF Downloads 153
26704 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: decision tree, genetic algorithm, machine learning, software defect prediction

Procedia PDF Downloads 332
26703 Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature

Authors: Huang Haoxin

Abstract:

Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature.

Keywords: asymmetrical contact, tellurium, dark current, infrared photodetector, sensitivity

Procedia PDF Downloads 53
26702 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 109
26701 Classifying Facial Expressions Based on a Motion Local Appearance Approach

Authors: Fabiola M. Villalobos-Castaldi, Nicolás C. Kemper, Esther Rojas-Krugger, Laura G. Ramírez-Sánchez

Abstract:

This paper presents the classification results about exploring the combination of a motion based approach with a local appearance method to describe the facial motion caused by the muscle contractions and expansions that are presented in facial expressions. The proposed feature extraction method take advantage of the knowledge related to which parts of the face reflects the highest deformations, so we selected 4 specific facial regions at which the appearance descriptor were applied. The most common used approaches for feature extraction are the holistic and the local strategies. In this work we present the results of using a local appearance approach estimating the correlation coefficient to the 4 corresponding landmark-localized facial templates of the expression face related to the neutral face. The results let us to probe how the proposed motion estimation scheme based on the local appearance correlation computation can simply and intuitively measure the motion parameters for some of the most relevant facial regions and how these parameters can be used to recognize facial expressions automatically.

Keywords: facial expression recognition system, feature extraction, local-appearance method, motion-based approach

Procedia PDF Downloads 414
26700 Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study

Authors: R. Güçlü, E. Küçüksakarya

Abstract:

Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students.

Keywords: color term, gender, mental lexicon, word association task

Procedia PDF Downloads 132