Search results for: learning outcomes evaluation
12528 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 10512527 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 6612526 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement
Authors: Zahra Alikhani Koopaei
Abstract:
In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.Keywords: intelligent multiplication table, design, construction, education, increased interest, students
Procedia PDF Downloads 6912525 Effectiveness of Visual Auditory Kinesthetic Tactile Technique on Reading Level among Dyslexic Children in Helikx Open School and Learning Centre, Salem
Authors: J. Mano Ranjini
Abstract:
Each and every child is special, born with a unique talent to explore this world. The word Dyslexia is derived from the Greek language in which “dys” meaning poor or inadequate and “lexis” meaning words or language. Dyslexia describes about a different kind of mind, which is often gifted and productive, that learns the concept differently. The main aim of the study is to bring the positive outcome of the reading level by examining the effectiveness of Visual Auditory Kinesthetic Tactile technique on Reading Level among Dyslexic Children at Helikx Open School and Learning Centre. A Quasi experimental one group pretest post test design was adopted for this study. The Reading Level was assessed by using the Schonell Graded Word Reading Test. Thirty subjects were drawn by using purposive sampling technique and the intervention Visual Auditory Kinesthetic Tactile technique was implemented to the Dyslexic Children for 30 consecutive days followed by the post Reading Level assessment revealed the improvement in the mean score value of reading level by 12%. Multi-sensory (VAKT) teaching uses all learning pathways in the brain (visual, auditory, kinesthetic-tactile) in order to enhance memory and learning and the ability in uplifting emotional, physical and societal dimensions. VAKT is an effective method to improve the reading skill of the Dyslexic Children that ensures the enormous significance of learning thereby influencing the wholesome of the child’s life.Keywords: visual auditory kinesthetic tactile technique, reading level, dyslexic children, Helikx Open School
Procedia PDF Downloads 60012524 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning
Authors: Suraj Gururaj, Sumantha Udupa U.
Abstract:
Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization
Procedia PDF Downloads 37712523 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking
Authors: Soheib Fergani
Abstract:
This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation
Procedia PDF Downloads 6512522 Utilizing Extended Reality in Disaster Risk Reduction Education: A Scoping Review
Authors: Stefano Scippo, Damiana Luzzi, Stefano Cuomo, Maria Ranieri
Abstract:
Background: In response to the rise in natural disasters linked to climate change, numerous studies on Disaster Risk Reduction Education (DRRE) have emerged since the '90s, mainly using a didactic transmission-based approach. Effective DRRE should align with an interactive, experiential, and participatory educational model, which can be costly and risky. A potential solution is using simulations facilitated by eXtended Reality (XR). Research Question: This study aims to conduct a scoping review to explore educational methodologies that use XR to enhance knowledge among teachers, students, and citizens about environmental risks, natural disasters (including climate-related ones), and their management. Method: A search string of 66 keywords was formulated, spanning three domains: 1) education and target audience, 2) environment and natural hazards, and 3) technologies. On June 21st, 2023, the search string was used across five databases: EBSCOhost, IEEE Xplore, PubMed, Scopus, and Web of Science. After deduplication and removing papers without abstracts, 2,152 abstracts (published between 2013 and 2023) were analyzed and 2,062 papers were excluded, followed by the exclusion of 56 papers after full-text scrutiny. Excluded studies focused on unrelated technologies, non-environmental risks, and lacked educational outcomes or accessible texts. Main Results: The 34 reviewed papers were analyzed for context, risk type, research methodology, learning objectives, XR technology use, outcomes, and educational affordances of XR. Notably, since 2016, there has been a rise in scientific publications, focusing mainly on seismic events (12 studies) and floods (9), with a significant contribution from Asia (18 publications), particularly Japan (7 studies). Methodologically, the studies were categorized into empirical (26) and non-empirical (8). Empirical studies involved user or expert validation of XR tools, while non-empirical studies included systematic reviews and theoretical proposals without experimental validation. Empirical studies were further classified into quantitative, qualitative, or mixed-method approaches. Six qualitative studies involved small groups of users or experts, while 20 quantitative or mixed-method studies used seven different research designs, with most (17) employing a quasi-experimental, one-group post-test design, focusing on XR technology usability over educational effectiveness. Non-experimental studies had methodological limitations, making their results hypothetical and in need of further empirical validation. Educationally, the learning objectives centered on knowledge and skills for surviving natural disaster emergencies. All studies recommended XR technologies for simulations or serious games but did not develop comprehensive educational frameworks around these tools. XR-based tools showed potential superiority over traditional methods in teaching risk and emergency management skills. However, conclusions were more valid in studies with experimental designs; otherwise, they remained hypothetical without empirical evidence. The educational affordances of XR, mainly user engagement, were confirmed by the studies. Authors’ Conclusions: The analyzed literature lacks specific educational frameworks for XR in DRRE, focusing mainly on survival knowledge and skills. There is a need to expand educational approaches to include uncertainty education, developing competencies that encompass knowledge, skills, and attitudes like risk perception.Keywords: disaster risk reduction education, educational technologies, scoping review, XR technologies
Procedia PDF Downloads 2512521 EFL Saudi Students' Use of Vocabulary via Twitter
Authors: A. Alshabeb
Abstract:
Vocabulary is one of the elements that links the four skills of reading, writing, speaking, and listening and is very critical in learning a foreign language. This study aims to determine how Saudi Arabian EFL students learn English vocabulary via Twitter. The study adopts a mixed sequential research design in collecting and analysing data. The results of the study provide several recommendations for vocabulary learning. Moreover, the study can help teachers to consider the possibilities of using Twitter further, and perhaps to develop new approaches to vocabulary teaching and to support students in their use of social media.Keywords: social media, twitter, vocabulary, web 2
Procedia PDF Downloads 41912520 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 25212519 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9412518 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)
Procedia PDF Downloads 12912517 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 18912516 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 16712515 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 14812514 Higher Education Institution Students’ Perception on Educational Technology
Authors: Kuek Teik Sheng, Leaw Zee Guan, Lim Wah Kien, Ting Tin Tin
Abstract:
Educational technology such as YouTube and Kahoot have arisen as an alternative to effective learning among higher education institutions. There are many researches done in carrying out experiments to test different educational technologies and received positive feedback from students. Yet, similar study is hardly found in Malaysia especially study that includes the latest educational technologies. As a developing country, it is crucial to ensure that these emerging technologies are assisting students in learning process before it is widely adopted in institutions. This paper conducted a study to explore the perception of higher education institution students on the current educational technologies in Malaysia which include online educational games, online videos/course, social media, presentation tools and resource management tool. Some of these technologies have not been looked into its potential in effective learning process. An online survey using questionnaire is conducted among a target of 300 university/college. In the survey, the result shows that majority of the target students in Malaysia agree that the current educational technologies help them in learning, understanding and manage their studies. It is necessary to discover students’ perceptions on the educational technologies in order to provide guidelines for the educators/institutions in selecting appropriate technology to conduct the lecture/tutorial efficiently and effectively.Keywords: education, educational technology, Facebook, PowerPoint, YouTube
Procedia PDF Downloads 24212513 A Randomized Control Trial Intervention to Combat Childhood Obesity in Negeri Sembilan: The Hebat! Program
Authors: Siti Sabariah Buhari, Ruzita Abdul Talib, Poh Bee Koon
Abstract:
This study aims to develop and evaluate an intervention to improve eating habits, active lifestyle and weight status of overweight and obese children in Negeri Sembilan. The H.E.B.A.T! Program involved children, parents, and school and focused on behaviour and environment modification to achieve its goal. The intervention consists of H.E.B.A.T! Camp, parent’s workshop and school-based activities. A total of 21 children from intervention school and 22 children from control school who had BMI for age Z-score ≥ +1SD participated in the study. Mean age of subjects was 10.8 ± 0.3 years old. Four phases were included in the development of the intervention. Evaluation of intervention was conducted through process, impact and outcome evaluation. Process evaluation found that intervention program was implemented successfully with minimal modification and without having any technical problems. Impact and outcome evaluation was assessed based on dietary intake, average step counts, BMI for age z-score, body fat percentage and waist circumference at pre-intervention (T0), post-intervention 1 (T1) and post-intervention 2 (T2). There was significant reduction in energy (14.8%) and fat (21.9%) intakes (at p < 0.05) at post-intervention 1 (T1) in intervention group. By controlling for sex as covariate, there was significant intervention effect for average step counts, BMI for age z-score and waist circumference (p < 0.05). In conclusion, the intervention made an impact on positive behavioural intentions and improves weight status of the children. It is expected that the HEBAT! Program could be adopted and implemented by the government and private sector as well as policy-makers in formulating childhood obesity intervention.Keywords: childhood obesity, diet, obesity intervention, physical activity
Procedia PDF Downloads 29212512 Evaluation of Free Technologies as Tools for Business Process Management
Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca
Abstract:
The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management
Procedia PDF Downloads 28812511 Application of WHO's Guideline to Evaluating Apps for Smoking Cessation
Authors: Suin Seo, Sung-Il Cho
Abstract:
Background: The use of mobile apps for smoking cessation has grown exponentially in recent years. Yet, there were limited researches which evaluated the quality of smoking cessation apps to our knowledge. In most cases, a clinical practice guideline which is focused on clinical physician was used as an evaluation tool. Objective: The objective of this study was to develop a user-centered measure for quality of mobile smoking cessation apps. Methods: A literature search was conducted to identify articles containing explicit smoking cessation guideline for smoker published until January 2018. WHO’s guide for tobacco users to quit was adopted for evaluation tool which assesses smoker-oriented contents of smoking cessation apps. Compared to the clinical practice guideline, WHO guideline was designed for smokers (non-specialist). On the basis of existing criteria which was developed based on 2008 clinical practice guideline for Treating Tobacco Use and Dependence, evaluation tool was modified and developed by an expert panel. Results: There were five broad categories of criteria that were identified including five objective quality scales: enhancing motivation, assistance with a planning and making quit attempts, preparation for relapse, self-efficacy, connection to smoking. Enhancing motivation and assistance with planning and making quit attempts were similar to contents of clinical practice guideline, but preparation for relapse, self-efficacy and connection to smoking (environment or habit which reminds of smoking) only existed on WHO guideline. WHO guideline had more user-centered elements than clinical guideline. Especially, self-efficacy is the most important determinant of behavior change in accordance with many health behavior change models. With the WHO guideline, it is now possible to analyze the content of the app in the light of a health participant, not a provider. Conclusion: The WHO guideline evaluation tool is a simple, reliable and smoker-centered tool for assessing the quality of mobile smoking cessation apps. It can also be used to provide a checklist for the development of new high-quality smoking cessation apps.Keywords: smoking cessation, evaluation, mobile application, WHO, guideline
Procedia PDF Downloads 18812510 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 11812509 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias
Authors: Cory A. Logston
Abstract:
It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.Keywords: empathy, implicit bias, transformative learning, virtual reality
Procedia PDF Downloads 19412508 Immersive Environment as an Occupant-Centric Tool for Architecture Criticism and Architectural Education
Authors: Golnoush Rostami, Farzam Kharvari
Abstract:
In recent years, developments in the field of architectural education have resulted in a shift from conventional teaching methods to alternative state-of-the-art approaches in teaching methods and strategies. Criticism in architecture has been a key player both in the profession and education, but it has been mostly offered by renowned individuals. Hence, not only students or other professionals but also critics themselves may not have the option to experience buildings and rely on available 2D materials, such as images and plans, that may not result in a holistic understanding and evaluation of buildings. On the other hand, immersive environments provide students and professionals the opportunity to experience buildings virtually and reflect their evaluation by experiencing rather than judging based on 2D materials. Therefore, the aim of this study is to compare the effect of experiencing buildings in immersive environments and 2D drawings, including images and plans, on architecture criticism and architectural education. As a result, three buildings that have parametric brick facades were studied through 2D materials and in Unreal Engine v. 24 as an immersive environment among 22 architecture students that were selected using convenient sampling and were divided into two equal groups using simple random sampling. This study used mixed methods, including quantitative and qualitative methods; the quantitative section was carried out by a questionnaire, and deep interviews were used for the qualitative section. A questionnaire was developed for measuring three constructs, including privacy regulation based on Altman’s theory, the sufficiency of illuminance levels in the building, and the visual status of the view (visually appealing views based on obstructions that may have been caused by facades). Furthermore, participants had the opportunity to reflect their understanding and evaluation of the buildings in individual interviews. Accordingly, the collected data from the questionnaires were analyzed using independent t-test and descriptive analyses in IBM SPSS Statistics v. 26, and interviews were analyzed using the content analysis method. The results of the interviews showed that the participants who experienced the buildings in the immersive environment were able to have a thorough and more precise evaluation of the buildings in comparison to those who studied them through 2D materials. Moreover, the analyses of the respondents’ questionnaires revealed that there were statistically significant differences between measured constructs among the two groups. The outcome of this study suggests that integrating immersive environments into the profession and architectural education as an effective and efficient tool for architecture criticism is vital since these environments allow users to have a holistic evaluation of buildings for vigorous and sound criticism.Keywords: immersive environments, architecture criticism, architectural education, occupant-centric evaluation, pre-occupancy evaluation
Procedia PDF Downloads 13412507 Effect of Semantic Relational Cues in Action Memory Performance over School Ages
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi
Abstract:
Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues
Procedia PDF Downloads 27512506 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 36912505 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 48012504 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights
Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan
Abstract:
The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being
Procedia PDF Downloads 7012503 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks
Authors: Dongwon Lee, Sunmyeng Kim
Abstract:
Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.Keywords: acoustic channel, MAC, temporal reuse, UAN
Procedia PDF Downloads 35012502 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 11212501 The Development of Online Lessons in Integration Model
Authors: Chalermpol Tapsai
Abstract:
The objectives of this research were to develop and find the efficiency of integrated online lessons by investigating the usage of online lessons, the relationship between learners’ background knowledge, and the achievement after learning with online lessons. The sample group in this study consisted of 97 students randomly selected from 121 students registering in 1/2012 at Trimitwittayaram Learning Center. The sample technique employed stratified sample technique of 4 groups according to their proficiency, i.e. high, moderate, low, and non-knowledge. The research instrument included online lessons in integration model on the topic of Java Programming, test after each lesson, the achievement test at the end of the course, and the questionnaires to find learners’ satisfaction. The results showed that the efficiency of online lessons was 90.20/89.18 with the achievement of after learning with the lessons higher than that before the lessons at the statistically significant level of 0.05. Moreover, the background knowledge of the learners on the programming showed the positive relationship with the achievement learning at the statistically significant level at 0.05. Learners with high background knowledge employed less exercises and samples than those with lower background knowledge. While learners with different background in the group of moderate and low did not show the significant difference in employing samples and exercises.Keywords: integration model, online lessons, learners’ background knowledge, efficiency
Procedia PDF Downloads 35912500 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.Keywords: education, methodological system, the teaching of mathematics, students motivation
Procedia PDF Downloads 35412499 An Interrogation of Lecturer’s Skills in Assisting Visually Impaired Students during the COVID-19 Lockdown Era in Selected Universities in Zimbabwe
Authors: Esther Mafunda
Abstract:
The present study interrogated the lecturer’s skills in supporting visually impaired students during the Covid-19 era at the University of Zimbabwe. It particularly assesses how the Covid-19 pandemic affected the learning experience of visually impaired students and which skills the lecturers possessed in order to assist the visually impaired students during online learning. Data was collected from lecturers and visually impaired students at the University of Zimbabwe Disability Resource Centre. Data was collected through the use of interviews and questionnaires. Using content analysis, it was established that visually impaired students faced challenges of lack of familiarity with the Moodle learning platform, marginalization, lack of professional training, and lack of training for parents and guardians. Lecturers faced challenges of lack of training, the curriculum, access, and technical know-how deficit. It was established that lecturers had to resort to social media platforms in order to assist visually impaired students. Visually impaired students also received assistance from their friends and family members. On the basis of the results of the research, it can be concluded that lecturers needed in-service training to be provided with the necessary skills and knowledge to teach students with visual impairments and provide quality education to students with visual impairments.Keywords: visual impairment, disability, covid-19, inclusive learning
Procedia PDF Downloads 92