Search results for: seismic stress
4446 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures
Authors: Radhwane Boudjelthia
Abstract:
The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.Keywords: earthquake, building, seismic forces, displacement, resonance, response
Procedia PDF Downloads 1274445 Seismic Analysis of Structurally Hybrid Wind Mill Tower
Authors: Atul K. Desai, Hemal J. Shah
Abstract:
The tall windmill towers are designed as monopole tower or lattice tower. In the present research, a 125-meter high hybrid tower which is a combination of lattice and monopole type is proposed. The response of hybrid tower is compared with conventional monopole tower. The towers were analyzed in finite element method software considering nonlinear seismic time history load. The synthetic seismic time history for different soil is derived using the SeismoARTIF software. From the present research, it is concluded that, in the hybrid tower, we are not getting resonance condition. The base shear is less in hybrid tower compared to monopole tower for different soil conditions.Keywords: dynamic analysis, hybrid wind mill tower, resonance condition, synthetic time history
Procedia PDF Downloads 1504444 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis
Authors: Andres Frederic
Abstract:
We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.Keywords: occupational stress, stress management, physiological measurement, accident prevention
Procedia PDF Downloads 4304443 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS
Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar
Abstract:
Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.Keywords: ETABS, golden ratio, seismic design, structural behavior
Procedia PDF Downloads 1804442 A Study of Emotional Intelligence and Perceived Stress among First and Second Year Medical Students in South India
Authors: Nitin Joseph
Abstract:
Objectives: This study was done to assess emotional intelligence levels and to find out its association with socio demographic variables and perceived stress among medical students. Material and Methods: This study was done among first and second year medical students. Data was collected using a self-administered questionnaire. Results: Emotional intelligence scores was found to significantly increase with age of the participants (F=2.377, P < 0.05). Perceived stress was found to be significantly more among first year (t=1.997, P=0.05). Perceived stress was found to significantly decrease with increasing emotional intelligence scores (r = – 0.226, P < 0.001). Conclusion: First year students were found to be more vulnerable to stress than their seniors probably due to lesser emotional intelligence. As both these parameters are related, ample measures to improve emotional intelligence needs to be supported in the training curriculum of beginners so as to make them more stress free during early student life.Keywords: emotional intelligence, medical students, perceived stress, socio demographic variables
Procedia PDF Downloads 4514441 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification
Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb
Abstract:
We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups
Procedia PDF Downloads 704440 Examination of the Influence of the Near-Surface Geology on the Initial Infrastructural Development Using High-Resolution Seismic Method
Authors: Collins Chiemeke, Stephen Ibe, Godwin Onyedim
Abstract:
This research work on high-resolution seismic tomography method was carried out with the aim of investigating how near-surface geology influences the initial distribution of infrastructural development in an area like Otuoke and its environs. To achieve this objective, seismic tomography method was employed. The result revealed that the overburden (highly-weathered layer) thickness ranges from 27 m to 50 m within the survey area, with an average value of 37 m. The 3D surface analysis for the overburden thickness distribution within the survey area showed that the thickness of the overburden is more in regions with less infrastructural development, and least in built-up areas. The range of velocity distribution from the surface to within a depth of 5 m is about 660 m/s to 1160 m/s, with an average value of 946 m/s. The 3D surface analysis of the velocity distribution also revealed that the areas with large infrastructural development are characterized with large velocity values compared with the undeveloped regions that has average low-velocity values. Hence, one can conclusively say that the initial settlement of Otuoke and its environs and the subsequent infrastructural development was influenced by the underlying near surface geology (rigid earth), among other factors.Keywords: geology, seismic, infrastructural, near-surface
Procedia PDF Downloads 3064439 Seismic Response of Viscoelastic Dampers for Steel Structures
Authors: Ali Khoshraftar, S. A. Hashemi
Abstract:
This paper is focused on the advantages of Viscoelastic Dampers (VED) to be used as energy-absorbing devices in buildings. The properties of VED are briefly described. The analytical studies of the model structures exhibiting the structural response reduction due to these viscoelastic devices are presented. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.Keywords: dampers, seismic evaluation, steel frames, viscoelastic
Procedia PDF Downloads 4834438 Occupational Stress in Nurses of a Maternity Ward in Lubango, Angola
Authors: Lídia Chienda, Tchilissila A. Simoes
Abstract:
Angola is known for the low quality of maternal health services, registering one of the highest maternal and child mortality of Africa. Working in these health facilities may be of great challenge for health professionals. In this study, we aimed to identify the presence of occupational stress in 76 nurses working in a maternity ward in Lubango, Southern Angola. The participants completed the Health Professional Stress Questionnaire and reported a moderate and high level of stress. To these individuals, 'receiving a low salary,' 'inadequate/insufficient salary,' 'overwork or very demanding work' and 'working long hours in a row' seemed to be the main indicators of occupational stress. Moreover, there was an influence of the work overload, the remuneration earned, the career, and family conflicts in the occupational stress index. These results contributed to a better understanding of the difficulties Angolan nurses are facing and the need to implement policies that envisage the wellbeing of this population.Keywords: Africa, maternity wards, nursing, occupational stress
Procedia PDF Downloads 2014437 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands
Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert
Abstract:
Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.Keywords: damping, energy-based seismic design, hysteretic energy, input energy
Procedia PDF Downloads 1684436 Placement of English Lexical Stress by Arabic-Speaking EFL Learners: How Computer-Generated Spectrographic Representations of Correct Pronunciations Can Provide a Visual Aid to Learners
Authors: Rami Al-Sadi
Abstract:
The assignment of lexical stress in English to its correct syllable is an enormous challenge to EFL learners, especially if their first language (L1) phonology is very different from English phonology. Arabic-speaking EFL learners not only stumble very frequently when it comes to placing the lexical stress in a given word, but they also seem to relegate the role of lexical stress as unimportant, mainly because in Arabic, unlike in English, lexical stress is not phonemic. This study aims at exploring the possible benefits of utilizing spectrographic representations of English words correctly pronounced, for the purpose of finding out how these spectrograms can provide a visual aid to the learners and help them rectify their stress placement errors as they see in real time spectrograms of the correct pronunciations juxtaposed on a computer screen with spectrograms of their own pronunciations for easy comparison. The study involved 120 students from the English Department at Prince Sattam bin Abdulaziz University in Saudi Arabia. 60 participants were taught the English lexical stress rules and also received spectrographic guidance on pronunciation; the other 60 received only verbal instruction on the stress rules and verbal feedback on their pronunciations. Statistical results showed that when the learners had the opportunity to ‘see’ their pronunciation mistakes, they were three times more likely to rectify their placement of lexical stress.Keywords: Arabic-speaking EFL learners, lexical stress, pronunciation, spectrographic representation, stress placement
Procedia PDF Downloads 1234435 Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections
Authors: Paola Pannuzzo, Tak-Ming Chan
Abstract:
In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.Keywords: bending, cyclic test, finite element modeling, hollow sections, hot-finished sections
Procedia PDF Downloads 1544434 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area
Authors: Van-Dycke Sarpong Asare, Vincent Adongo
Abstract:
Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.Keywords: tomography, characterization, consolidated, Pwalugu and seismograph
Procedia PDF Downloads 1254433 Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area.Keywords: chaura thrust, out-of-sequence thrust, himachal pradesh, geological setting, tectonic framework, rock formations, structural characteristics, stress interactions, fault interactions, geological implications, seismic hazard assessment, geological hazards, future research, mitigation strategies.
Procedia PDF Downloads 784432 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations
Authors: Oleg Kabantsev, Karomatullo Umarov
Abstract:
The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis
Procedia PDF Downloads 2054431 Seismic Performance of Concrete Moment Resisting Frames in Western Canada
Authors: Ali Naghshineh, Ashutosh Bagchi
Abstract:
Performance-based seismic design concepts are increasingly being adopted in various jurisdictions. While the National Building Code of Canada (NBCC) is not fully performance-based, it provides some features of a performance-based code, such as displacement control and objective-based solutions. Performance evaluation is an important part of a performance-based design. In this paper, the seismic performance of a set of code-designed 4, 8 and 12 story moment resisting concrete frames located in Victoria, BC, in the western part of Canada at different hazard levels namely, SLE (Service Level Event), DLE (Design Level Event) and MCE (Maximum Considered Event) has been studied. The seismic performance of these buildings has been evaluated based on FEMA 356 and ATC 72 procedures, and the nonlinear time history analysis. Pushover analysis has been used to investigate the different performance levels of these buildings and adjust their design based on the corresponding target displacements. Since pushover analysis ignores the higher mode effects, nonlinear dynamic time history using a set of ground motion records has been performed. Different types of ground motion records, such as crustal and subduction earthquake records have been used for the dynamic analysis to determine their effects. Results obtained from push over analysis on inter-story drift, displacement, shear and overturning moment are compared to those from the dynamic analysis.Keywords: seismic performance., performance-based design, concrete moment resisting frame, crustal earthquakes, subduction earthquakes
Procedia PDF Downloads 2644430 Geophysical Contribution to Reveal the Subsurface Structural Setting Using Gravity, Seismic and Seismological Data in the Chott Belts, Southern Atlas of Tunisia
Authors: Nesrine Frifita, Mohamed Gharbi, Kevin Mickus
Abstract:
Physical methods based on gravity, seismic and seismological data were adopted to clarify the relationship between the distribution of seismicity and the crustal deformations under the chott belts and surrounding regions, in southern atlas of Tunisia. Gafsa and its surrounding were described as a moderate seismic zone, and the fault of Gafsa is one of most seismically active faults in Tunisia in general, and in the southern Atlas in particularly. The present work aims to prove a logical relationship between the distribution of seismicity and deformations which strongly related to thickness and density variations within the basement and sedimentary cover along the study area, through several physical methods; gravity, seismic and seismological data were interpreted to calculate physical propriety of the subsurface rocks, the depth and geometry of active faults and causatives bodies. Findings show that depths variation and mixed thin and thick skinned structural style characterizing the chott belts explain the moderate seismicity in the study area.Keywords: potential fields, seismicity, Southern Atlas, Tunisia
Procedia PDF Downloads 1124429 Effect of Aggregate Size on Mechanical Behavior of Passively Confined Concrete Subjected to 3D Loading
Authors: Ibrahim Ajani Tijani, C. W. Lim
Abstract:
Limited studies have examined the effect of size on the mechanical behavior of confined concrete subjected to 3-dimensional (3D) test. With the novel 3D testing system to produce passive confinement, concrete cubes were tested to examine the effect of size on stress-strain behavior of the specimens. The effect of size on 3D stress-strain relationship was scrutinized and compared to the stress-strain relationship available in the literature. It was observed that the ultimate stress and the corresponding strain was related to the confining rigidity and size. The size shows a significant effect on the intersection stress and a new model was proposed for the intersection stress based on the conceptual design of the confining plates.Keywords: concrete, aggregate size, size effect, 3D compression, passive confinement
Procedia PDF Downloads 2084428 Stress Concentration around Countersunk Hole in Isotropic Plate under Transverse Loading
Authors: Parveen K. Saini, Tarun Agarwal
Abstract:
An investigation into the effect of countersunk depth, plate thickness, countersunk angle and plate width on the stress concentration around countersunk hole is carried out with the help of finite element analysis. The variation of stress concentration with respect to these parameters is studied for three types of loading viz. uniformly distributed load, uniformly varying load and functionally distributed load. The results of the finite element analysis are interpreted and some conclusions are drawn. The distribution of stress concentration around countersunk hole in isotropic plates simply supported at all the edges is found similar and is independent of loading. The maximum stress concentration also occurs at a particular point irrespective of the loading conditions.Keywords: stress concentration factor, countersunk hole, finite element, ANSYS
Procedia PDF Downloads 4474427 Discussion on Dispersion Curves of Non-penetrable Soils from in-Situ Seismic Dilatometer Measurements
Authors: Angelo Aloisio Dag, Pasquale Pasca, Massimo Fragiacomo, Ferdinando Totani, Gianfranco Totani
Abstract:
The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The authors report the results of site characterization in Macerata, where they measured the Vs using the seismic dilatometer in a 100m deep borehole. The standard Vs estimation originates from the cross-correlation between the signals acquired by two geophones at increasing depths. This paper focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of Lamb waves may be notable up to 100m depth. The amplitude of surface waves decrease rapidly with depth: still, their influence may be essential up to depths considered unusual for standard geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena. The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the importance of Lamb waves in soil characterization.Keywords: dispersion curve, seismic dilatometer, shear wave, soil mechanics
Procedia PDF Downloads 1724426 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames
Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar
Abstract:
Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping
Procedia PDF Downloads 1494425 Evaluation of Expected Annual Loss Probabilities of RC Moment Resisting Frames
Authors: Saemee Jun, Dong-Hyeon Shin, Tae-Sang Ahn, Hyung-Joon Kim
Abstract:
Building loss estimation methodologies which have been advanced considerably in recent decades are usually used to estimate socio and economic impacts resulting from seismic structural damage. In accordance with these methods, this paper presents the evaluation of an annual loss probability of a reinforced concrete moment resisting frame designed according to Korean Building Code. The annual loss probability is defined by (1) a fragility curve obtained from a capacity spectrum method which is similar to a method adopted from HAZUS, and (2) a seismic hazard curve derived from annual frequencies of exceedance per peak ground acceleration. Seismic fragilities are computed to calculate the annual loss probability of a certain structure using functions depending on structural capacity, seismic demand, structural response and the probability of exceeding damage state thresholds. This study carried out a nonlinear static analysis to obtain the capacity of a RC moment resisting frame selected as a prototype building. The analysis results show that the probability of being extensive structural damage in the prototype building is expected to 0.004% in a year.Keywords: expected annual loss, loss estimation, RC structure, fragility analysis
Procedia PDF Downloads 3974424 Seismic Performance of Nuclear Power Plant Structures Subjected to Korean Earthquakes
Authors: D. D. Nguyen, H. S. Park, S. W. Yang, B. Thusa, Y. M. Kim, T. H. Lee
Abstract:
Currently, the design response spectrum (i.e., Nuclear Regulatory Commission - NRC 1.60 spectrum) with the peak ground acceleration (PGA) 0.3g (for Safe Shutdown Earthquake level) is specified for designing the new nuclear power plant (NPP) structures in Korea. However, the recent earthquakes in the region such as the 2016 Gyeongju and the 2017 Pohang earthquake showed that the possible PGA of ground motions can be larger than 0.3g. Therefore, there is a need to analyze the seismic performance of the existing NPP structures under these earthquakes. An NPP model, APR-1400, which is designed and built in Korea was selected for a case study. The NPP structure is numerically modeled in terms of lumped-mass stick elements using OpenSees framework. The floor acceleration and displacement of components are measured to quantify the responses of components. The numerical results show that the floor spectral accelerations are significantly amplified in the components subjected to Korean earthquakes. A comparison between floor response spectra of Korean earthquakes and the NRC design motion highlights that the seismic design level of NPP components under an earthquake should be thoroughly reconsidered. Additionally, a seismic safety assessment of the equipment and relays attached to main structures is also required.Keywords: nuclear power plant, floor response spectra, Korean earthquake, NRC spectrum
Procedia PDF Downloads 1584423 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations
Authors: Mohammad Vahedi Torshizi
Abstract:
In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.Keywords: bending stress, contact stress, plantary, mathematical equations
Procedia PDF Downloads 2894422 Using Inverted 4-D Seismic and Well Data to Characterise Reservoirs from Central Swamp Oil Field, Niger Delta
Authors: Emmanuel O. Ezim, Idowu A. Olayinka, Michael Oladunjoye, Izuchukwu I. Obiadi
Abstract:
Monitoring of reservoir properties prior to well placements and production is a requirement for optimisation and efficient oil and gas production. This is usually done using well log analyses and 3-D seismic, which are often prone to errors. However, 4-D (Time-lapse) seismic, incorporating numerous 3-D seismic surveys of the same field with the same acquisition parameters, which portrays the transient changes in the reservoir due to production effects over time, could be utilised because it generates better resolution. There is, however dearth of information on the applicability of this approach in the Niger Delta. This study was therefore designed to apply 4-D seismic, well-log and geologic data in monitoring of reservoirs in the EK field of the Niger Delta. It aimed at locating bypassed accumulations and ensuring effective reservoir management. The Field (EK) covers an area of about 1200km2 belonging to the early (18ma) Miocene. Data covering two 4-D vintages acquired over a fifteen-year interval were obtained from oil companies operating in the field. The data were analysed to determine the seismic structures, horizons, Well-to-Seismic Tie (WST), and wavelets. Well, logs and production history data from fifteen selected wells were also collected from the Oil companies. Formation evaluation, petrophysical analysis and inversion alongside geological data were undertaken using Petrel, Shell-nDi, Techlog and Jason Software. Well-to-seismic tie, formation evaluation and saturation monitoring using petrophysical and geological data and software were used to find bypassed hydrocarbon prospects. The seismic vintages were interpreted, and the amounts of change in the reservoir were defined by the differences in Acoustic Impedance (AI) inversions of the base and the monitor seismic. AI rock properties were estimated from all the seismic amplitudes using controlled sparse-spike inversion. The estimated rock properties were used to produce AI maps. The structural analysis showed the dominance of NW-SE trending rollover collapsed-crest anticlines in EK with hydrocarbons trapped northwards. There were good ties in wells EK 27, 39. Analysed wavelets revealed consistent amplitude and phase for the WST; hence, a good match between the inverted impedance and the good data. Evidence of large pay thickness, ranging from 2875ms (11420 TVDSS-ft) to about 2965ms, were found around EK 39 well with good yield properties. The comparison between the base of the AI and the current monitor and the generated AI maps revealed zones of untapped hydrocarbons as well as assisted in determining fluids movement. The inverted sections through EK 27, 39 (within 3101 m - 3695 m), indicated depletion in the reservoirs. The extent of the present non-uniform gas-oil contact and oil-water contact movements were from 3554 to 3575 m. The 4-D seismic approach led to better reservoir characterization, well development and the location of deeper and bypassed hydrocarbon reservoirs.Keywords: reservoir monitoring, 4-D seismic, well placements, petrophysical analysis, Niger delta basin
Procedia PDF Downloads 1164421 Grouping and the Use of Drums in the Teaching of Word Stress at the Middle Basic: A Pragmatic Approach
Authors: Onwumere O. J.
Abstract:
The teaching of stress at any level of education could be a daunting task for the second language teacher because most times, they are bereft of the right approach to use in teaching it even at the fact is that, teaching it. But the fact is that teaching stress even at the middle basic could be interesting if the right approach is employed. To this end, the researcher was of the view that grouping could be a very good strategy to employ in order to sustain the interest of the learner and that the use at drums would be a good way to concretise the teaching of stress at this level. He was able to do this by discussing stress, grouping as a good technique, and the use of drums in teaching stress. To establish the fact that the use of drums would be very effective, four research questions contained in a questionnaire were structured. Three hundred (300) teachers of English in four tertiary institutions, three secondary schools and three primary schools in Nigeria were used. Based on the data analysis and findings, suggestions were given on how teachers and learners could use drums to make the teaching and learning of stress enjoyable for both teachers and learners at the middle basic of education.Keywords: concretise, grouping, right approach, second language
Procedia PDF Downloads 5454420 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults
Authors: Maria Trimintziou, Michael Sakellariou, Prodromos Psarropoulos
Abstract:
Nowadays, the exploitation of hydrocarbons reserves in deep seas and oceans, in combination with the need to transport hydrocarbons among countries, has made the design, construction and operation of offshore pipelines very significant. Under this perspective, it is evident that many more offshore pipelines are expected to be constructed in the near future. Since offshore pipelines are usually crossing extended areas, they may face a variety of geohazards that impose substantial permanent ground deformations (PGDs) to the pipeline and potentially threaten its integrity. In case of a geohazard area, there exist three options to proceed. The first option is to avoid the problematic area through rerouting, which is usually regarded as an unfavorable solution due to its high cost. The second is to apply (if possible) mitigation/protection measures in order to eliminate the geohazard itself. Finally, the last appealing option is to allow the pipeline crossing through the geohazard area, provided that the pipeline will have been verified against the expected PGDs. In areas with moderate or high seismicity the design of an offshore pipeline is more demanding due to the earthquake-related geohazards, such as landslides, soil liquefaction phenomena, and active faults. It is worthy to mention that although worldwide there is a great experience in offshore geotechnics and pipeline design, the experience in seismic design of offshore pipelines is rather limited due to the fact that most of the pipelines have been constructed in non-seismic regions (e.g. North Sea, West Australia, Gulf of Mexico, etc.). The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.Keywords: offhore pipelines, seismic design, active faults, permanent ground deformations (PGDs)
Procedia PDF Downloads 5884419 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen
Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su
Abstract:
Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen
Procedia PDF Downloads 3094418 Hysteresis in Sustainable Two-layer Circular Tube under a Lateral Compression Load
Authors: Ami Nomura, Ken Imanishi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki
Abstract:
Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device
Procedia PDF Downloads 2954417 Pore Pressure and In-situ Stress Magnitudes with Image Log Processing and Geological Interpretation in the Haoud Berkaoui Hydrocarbon Field, Northeastern Algerian Sahara
Authors: Rafik Baouche, Rabah Chaouchi
Abstract:
This work reports the first comprehensive stress field interpretation from the eleven recently drilled wells in the Berkaoui Basin, Algerian Sahara. A cumulative length of 7000+m acoustic image logs from 06 vertical wells were investigated, and a mean NW-SE (128°-145° N) maximum horizontal stress (SHMax) orientation is inferred from the B-D quality wellbore breakouts. The study integrates log-based approach with the downhole measurements to infer pore pressure, in-situ stress magnitudes. Vertical stress (Sv), interpreted from the bulk-density profiles, has an average gradient of 22.36 MPa/km. The Ordovician and Cambrian reservoirs have a pore pressure gradient of 13.47-13.77 MPa/km, which is more than the hydrostatic pressure regime. A 17.2-18.3 MPa/km gradient of minimum horizontal stress (Shmin) is inferred from the fracture closure pressure in the reservoirs. Breakout widths constrained the SHMax magnitude in the 23.8-26.5 MPa/km range. Subsurface stress distribution in the central Saharan Algeria indicates that the present-day stress field in the Berkaoui Basin is principally strike-slip faulting (SHMax > Sv > Shmin). Inferences are drawn on the regional stress pattern and drilling and reservoir development.Keywords: stress, imagery, breakouts, sahara
Procedia PDF Downloads 75