Search results for: reduction in potential medical errors due to elimination of transcription errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19547

Search results for: reduction in potential medical errors due to elimination of transcription errors

19277 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 337
19276 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination

Authors: Lawong Damian Bernsah

Abstract:

Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per Person

Keywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person

Procedia PDF Downloads 275
19275 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model

Authors: Babak Daneshvar Rouyendegh

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)

Procedia PDF Downloads 679
19274 Software Defect Analysis- Eclipse Dataset

Authors: Amrane Meriem, Oukid Salyha

Abstract:

The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.

Keywords: software engineering, machine learning, bugs detection, effort estimation

Procedia PDF Downloads 87
19273 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
19272 An Analysis of Prefabricated Construction Waste: A Case Study Approach

Authors: H. Hakim, C. Kibert, C. Fabre, S. Monadizadeh

Abstract:

Construction industry is an industry saddled with chronic problems of high waste generation. Waste management that is to ensure materials are utilized in an efficient manner would make a major contribution to mitigating the negative environmental impacts of construction waste including finite resources depletion and growing occupied landfill areas to name a few. Furthermore, ‘material resource efficiency’ has been found an economically smart approach specially when considered during the design phase. One effective strategy is to utilizing off-site construction process which includes a series of prefabricated systems such as mobile, modular, and HUD construction (Department of Housing and Urban Development manufactured buildings). These types of buildings are by nature material and resource-efficient. Despite conventional construction that is exposed to adverse weather conditions, manufactured construction production line is capable of creating repetitive units in a factory controlled environment. A factory can have several parallel projects underway with a high speed and in a timely manner which simplifies the storage of excess materials and re-allocating to the next projects. The literature reports that prefabricated construction significantly helps reduce errors, site theft, rework, and delayed problems and can ultimately lead to a considerable waste reduction. However, there is not sufficient data to quantify this reduction when it comes to a regular modular house in the U.S. Therefore, this manuscript aims to provide an analysis of waste originated from a manufactured factory trend. The analysis was made possible with several visits and data collection of Homes of Merits, a Florida Manufactured and Modular Homebuilder. The results quantify and verify a noticeable construction waste reduction.

Keywords: construction waste, modular construction, prefabricated buildings, waste management

Procedia PDF Downloads 268
19271 Functioning of Public Distribution System and Calories Intake in the State of Maharashtra

Authors: Balasaheb Bansode, L. Ladusingh

Abstract:

The public distribution system is an important component of food security. It is a massive welfare program undertaken by Government of India and implemented by state government since India being a federal state; for achieving multiple objectives like eliminating hunger, reduction in malnutrition and making food consumption affordable. This program reaches at the community level through the various agencies of the government. The paper focuses on the accessibility of PDS at household level and how the present policy framework results in exclusion and inclusion errors. It tries to explore the sanctioned food grain quantity received by differentiated ration cards according to income criterion at household level, and also it has highlighted on the type of corruption in food distribution that is generated by the PDS system. The data used is of secondary nature from NSSO 68 round conducted in 2012. Bivariate and multivariate techniques have been used to understand the working and consumption of food for this paper.

Keywords: calories intake, entitle food quantity, poverty aliviation through PDS, target error

Procedia PDF Downloads 336
19270 Biodegradation Potential of Selected Micromycetes Against Dyeing Unit Effluents of Sapphire Industry, Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 79
19269 Biodegradation Potential of Selected Micromycetes against Dyeing Unit Effluents of Sapphire Industry in Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 95
19268 Agriculture, Food Security and Poverty Reduction in Nigeria: Cointegration and Granger Causality Approach

Authors: Ogunwole Cecilia Oluwakemi, Timothy Ayomitunde Aderemi

Abstract:

Provision of sufficient food and elimination of abject poverty have usually been the conventional benefits of agriculture in any society. Meanwhile, despite the fact that Nigeria is an agrarian society, food insecurity and poverty have become the issues of concern among both scholars and policymakers in the recent times. Against this backdrop, this study examined the nexus among agriculture, food security, and poverty reduction in Nigeria from 1990 to 2019 within the framework of the Cointegration and Granger Causality approach. Data was collected from the Central Bank of Nigeria Statistical Bulletin and the World Development Indicators, respectively. The following are the major results that emanated from the study. A long run equilibrium relationship exists among agricultural value added, food production index, and GDP per capita in Nigeria. Similarly, there is a unidirectional causality which flows from food production index to poverty reduction in Nigeria. In the same vein, one way causality flows from poverty reduction to agricultural value added in Nigeria. Consequently, this study makes the following recommendation for the policymakers in Nigeria, and other African countries by extension, that agricultural value added and food production are the important variables that cannot be undermined when poverty reduction occupies the central focus of the policymakers. Therefore, any time these policymakers want to reduce poverty, policies that drive agricultural value added and food production should be embarked upon. Therefore, this study will contribute to the literature by establishing the type of linkage that exists between agriculture, food security, and poverty reduction in Nigeria.

Keywords: agriculture, value added, food production, GDP per capita, Nigeria

Procedia PDF Downloads 199
19267 How Can Personal Protective Equipment Be Best Used and Reused: A Human Factors based Look at Donning and Doffing Procedures

Authors: Devin Doos, Ashley Hughes, Trang Pham, Paul Barach, Rami Ahmed

Abstract:

Over 115,000 Health Care Workers (HCWs) have died from COVID-19, and millions have been infected while caring for patients. HCWs have filed thousands of safety complaints surrounding safety concerns due to Personal Protective Equipment (PPE) shortages, which included concerns around inadequate and PPE reuse. Protocols for donning and doffing PPE remain ambiguous, lacking an evidence-base, and often result in wide deviations in practice. PPE donning and doffing protocol deviations commonly result in self-contamination but have not been thoroughly addressed. No evidence-driven protocols provide guidance on protecting HCW during periods of PPE reuse. Objective: The aim of this study was to examine safety-related threats and risks to Health Care Workers (HCWs) due to the reuse of PPE among Emergency Department personnel. Method: We conducted a prospective observational study to examine the risks of reusing PPE. First, ED personnel were asked to don and doff PPE in a simulation lab. Each participant was asked to don and doff PPE five times, according to the maximum reuse recommendation set by the Centers for Disease Control and Prevention (CDC). Each participant was videorecorded; video recordings were reviewed and coded independently by at least 2 of the 3trained coders for safety behaviors and riskiness of actions. A third coder was brought in when the agreement between the 2 coders could not be reached. Agreement between coders was high (81.9%), and all disagreements (100%) were resolved via consensus. A bowtie risk assessment chart was constructed analyzing the factors that contribute to increased risks HCW are faced with due to PPE use and reuse. Agreement amongst content experts in the field of Emergency Medicine, Human Factors, and Anesthesiology was used to select aspects of health care that both contribute and mitigate risks associated with PPE reuse. Findings: Twenty-eight clinician participants completed five rounds of donning/doffing PPE, yielding 140 PPE donning/doffing sequences. Two emerging threats were associated with behaviors in donning, doffing, and re-using PPE: (i) direct exposure to contaminant, and (ii) transmission/spread of contaminant. Protective behaviors included: hand hygiene, not touching the patient-facing surface of PPE, and ensuring a proper fit and closure of all PPE materials. 100% of participants (n= 28) deviated from the CDC recommended order, and most participants (92.85%, n=26) self-contaminated at least once during reuse. Other frequent errors included failure to tie all ties on the PPE (92.85%, n=26) and failure to wash hands after a contamination event occurred (39.28%, n=11). Conclusions: There is wide variation and regular errors in how HCW don and doffPPE while including in reusing PPE that led to self-contamination. Some errors were deemed “recoverable”, such as hand washing after touching a patient-facing surface to remove the contaminant. Other errors, such as using a contaminated mask and accidentally spreading to the neck and face, can lead to compound risks that are unique to repeated PPE use. A more comprehensive understanding of the contributing threats to HCW safety and complete approach to mitigating underlying risks, including visualizing with risk management toolsmay, aid future PPE designand workflow and space solutions.

Keywords: bowtie analysis, health care, PPE reuse, risk management

Procedia PDF Downloads 92
19266 Unveiling Special Policy Regime, Judgment, and Taylor Rules in Tunisia

Authors: Yosra Baaziz, Moez Labidi

Abstract:

Given limited research on monetary policy rules in revolutionary countries, this paper challenges the suitability of the Taylor rule in characterizing the monetary policy behavior of the Tunisian Central Bank (BCT), especially in turbulent times. More specifically, we investigate the possibility that the Taylor rule should be formulated as a threshold process and examine the validity of such nonlinear Taylor rule as a robust rule for conducting monetary policy in Tunisia. Using quarterly data from 1998:Q4 to 2013:Q4 to analyze the movement of nominal short-term interest rate of the BCT, we find that the nonlinear Taylor rule improves its performance with the advent of special events providing thus a better description of the Tunisian interest rate setting. In particular, our results show that the adoption of an appropriate nonlinear approach leads to a reduction in the errors of 150 basis points in 1999 and 2009, and 60 basis points in 2011, relative to the linear approach.

Keywords: policy rule, central bank, exchange rate, taylor rule, nonlinearity

Procedia PDF Downloads 296
19265 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 286
19264 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 317
19263 New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials

Authors: B. Makhlouf, O. Bouchhida, M. Nibouche, K. Laidi

Abstract:

A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory.

Keywords: harmonic elimination, Particle Swarm Optimisation (PSO), polynomial interpolation, pulse width modulation, real-time harmonics control, voltage inverter

Procedia PDF Downloads 504
19262 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 70
19261 Secure Optical Communication System Using Quantum Cryptography

Authors: Ehab AbdulRazzaq Hussein

Abstract:

Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.

Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).

Procedia PDF Downloads 407
19260 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 20
19259 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 70
19258 Exploring Students' Alternative Conception in Vector Components

Authors: Umporn Wutchana

Abstract:

An open ended problem and unstructured interview had been used to explore students’ conceptual and procedural understanding of vector components. The open ended problem had been designed based on research instrument used in previous physics education research. Without physical context, we asked students to find out magnitude and draw graphical form of vector components. The open ended problem was given to 211 first year students of faculty of science during the third (summer) semester in 2014 academic year. The students spent approximately 15 minutes of their second time of the General Physics I course to complete the open ended problem after they had failed. Consequently, their responses were classified based on the similarity of errors performed in the responses. Then, an unstructured interview was conducted. 7 students were randomly selected and asked to reason and explain their answers. The study results showed that 53% of 211 students provided correct numerical magnitude of vector components while 10.9% of them confused and punctuated the magnitude of vectors in x- with y-components. Others 20.4% provided just symbols and the last 15.6% gave no answer. When asking to draw graphical form of vector components, only 10% of 211 students made corrections. A majority of them produced errors and revealed alternative conceptions. 46.5% drew longer and/or shorter magnitude of vector components. 43.1% drew vectors in different forms or wrote down other symbols. Results from the unstructured interview indicated that some students just memorized the method to get numerical magnitude of x- and y-components. About graphical form of component vectors, some students though that the length of component vectors should be shorter than those of the given one. So then, it could be combined to be equal length of the given vectors while others though that component vectors should has the same length as the given vectors. It was likely to be that many students did not develop a strong foundation of understanding in vector components but just learn by memorizing its solution or the way to compute its magnitude and attribute little meaning to such concept.

Keywords: graphical vectors, vectors, vector components, misconceptions, alternative conceptions

Procedia PDF Downloads 189
19257 Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction

Authors: Hyun Lim, Dong Sook Min, Han Eul Yun, Kil Tae Kim, Ya Nan Sun, Young Ho Kim, Hyun Pyo Kim

Abstract:

Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation.

Keywords: acanthoic acid, Acanthopanax koreanum, cartilage, impressic acid, matrix metalloproteinase

Procedia PDF Downloads 364
19256 Software Development for AASHTO and Ethiopian Roads Authority Flexible Pavement Design Methods

Authors: Amare Setegn Enyew, Bikila Teklu Wodajo

Abstract:

The primary aim of flexible pavement design is to ensure the development of economical and safe road infrastructure. However, failures can still occur due to improper or erroneous structural design. In Ethiopia, the design of flexible pavements relies on doing calculations manually and selecting pavement structure from catalogue. The catalogue offers, in eight different charts, alternative structures for combinations of traffic and subgrade classes, as outlined in the Ethiopian Roads Authority (ERA) Pavement Design Manual 2001. Furthermore, design modification is allowed in accordance with the structural number principles outlined in the AASHTO 1993 Guide for Design of Pavement Structures. Nevertheless, the manual calculation and design process involves the use of nomographs, charts, tables, and formulas, which increases the likelihood of human errors and inaccuracies, and this may lead to unsafe or uneconomical road construction. To address the challenge, a software called AASHERA has been developed for AASHTO 1993 and ERA design methods, using MATLAB language. The software accurately determines the required thicknesses of flexible pavement surface, base, and subbase layers for the two methods. It also digitizes design inputs and references like nomographs, charts, default values, and tables. Moreover, the software allows easier comparison of the two design methods in terms of results and cost of construction. AASHERA's accuracy has been confirmed through comparisons with designs from handbooks and manuals. The software can aid in reducing human errors, inaccuracies, and time consumption as compared to the conventional manual design methods employed in Ethiopia. AASHERA, with its validated accuracy, proves to be an indispensable tool for flexible pavement structure designers.

Keywords: flexible pavement design, AASHTO 1993, ERA, MATLAB, AASHERA

Procedia PDF Downloads 63
19255 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 157
19254 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 339
19253 Evaluating the Dosimetric Performance for 3D Treatment Planning System for Wedged and Off-Axis Fields

Authors: Nashaat A. Deiab, Aida Radwan, Mohamed S. Yahiya, Mohamed Elnagdy, Rasha Moustafa

Abstract:

This study is to evaluate the dosimetric performance of our institution's 3D treatment planning system for wedged and off-axis 6MV photon beams, guided by the recommended QA tests documented in the AAPM TG53; NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Ten tests were applied on solid water equivalent phantom along with 2D array dose detection system. The calculated doses using 3D treatment planning system PrecisePLAN were compared with measured doses to make sure that the dose calculations are accurate for simple situations such as square and elongated fields, different SSD, beam modifiers e.g. wedges, blocks, MLC-shaped fields and asymmetric collimator settings. The QA results showed dosimetric accuracy of the TPS within the specified tolerance limits. Except for large elongated wedged field, the central axis and outside central axis have errors of 0.2% and 0.5%, respectively, and off- planned and off-axis elongated fields the region outside the central axis of the beam errors are 0.2% and 1.1%, respectively. The dosimetric investigated results yielded differences within the accepted tolerance level as recommended. Differences between dose values predicted by the TPS and measured values at the same point are the result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.

Keywords: quality assurance, dose calculation, wedged fields, off-axis fields, 3D treatment planning system, photon beam

Procedia PDF Downloads 446
19252 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
19251 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects

Authors: Ehsan Sadie

Abstract:

Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.

Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion

Procedia PDF Downloads 443
19250 Factors Affecting Contractual Disputes in Construction ProJects in Sri Lanka

Authors: R. M. Rajapaksa

Abstract:

Construction industry is one of the key players in driving the economy of a country to achieve its prosperity. However, a dispute is one of the crucial factors which prevent the completion of construction contracts within the budgeted cost, scheduled time, and accepted quality. Disputes are inevitable in the construction contract. Accordingly, a study has been undertaken to identify the factors affecting contractual disputes in construction projects in Sri Lanka. The study was a mixed approach with major qualitative and minor quantitative. Qualitative study was set in the form of in-depth interviews with eighteen participants, and quantitative study was conducted using a questionnaire with twenty-four respondents from previously implemented projects by the National Water Supply & Drainage Board representing the employer, engineer and the Contractor to identify the factors affecting contractual disputes and to verify most critical factors respectively. Data analysis for qualitative and quantitative studies was carried out by means of transcribing, code & categorizeand average score methods, respectively. The study reveals that there are forty factors affecting the contractual disputes in construction contracts in Sri Lanka. The finding further illustrates that conflicting decisions by inexperience personnel in the higher position of the Employer, ambiguities resulting inadequate descriptions of the preliminary/general items in price schedule, unfair valuation and late confirmation of variations, unfair determination due to lack of experience of the Engineer/Consultant, under certification of progress payments, unfair grant of EOT & application of delay damages, unreasonable claims for variation of works, errors/discrepancies/ambiguities in the contract conditions and discrepancies & errors in designs & specifications are the most critical factors affecting contractual disputes. Finally, the study proposed remedial measures to most critical factors affecting contractual disputes.

Keywords: dispute, contractual, factors, employer, engineer, contractor, construction projects

Procedia PDF Downloads 218
19249 Virucidal, Bactericidal and Fungicidal Efficiency of Dry Microfine Steam on Innate Surfaces

Authors: C. Recchia, M. Bourel, B. Recchia

Abstract:

Microorganisms (viruses, bacteria, fungi) are responsible for most communicable diseases, threatening human health. For domestic use, chemical agents are often criticized because of their potential dangerousness, and natural solutions are needed. Application of the “dry microfine steam” (DMS) technology was tested on a selection of common pathogens (SARS-CoV-2, enterovirus EV-71, human coronavirus 229E, E. coli, S. aureus, C. albicans), on different innate surfaces, for 5 to 10 seconds. Quantification of the remaining pathogens was performed, and the reduction rates ranged from 99.8% (S. aureus on plastic) to over 99.999%. DMS showed high efficacy in the elimination of common microorganisms and could be seen as a natural alternative to chemical agents to improve domestic hygiene.

Keywords: steam, SARS-CoV-2, bactericidal, virucidal, fungicidal, sterilization

Procedia PDF Downloads 165
19248 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems

Authors: Andrey V. Timofeev

Abstract:

A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.

Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation

Procedia PDF Downloads 257