Search results for: mining industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6266

Search results for: mining industry

5996 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 403
5995 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic

Procedia PDF Downloads 335
5994 Significant Aspects and Drivers of Germany and Australia's Energy Policy from a Political Economy Perspective

Authors: Sarah Niklas, Lynne Chester, Mark Diesendorf

Abstract:

Geopolitical tensions, climate change and recent movements favouring a transformative shift in institutional power structures have influenced the economics of conventional energy supply for decades. This study takes a multi-dimensional approach to illustrate the potential of renewable energy (RE) technology to provide a pathway to a low-carbon economy driven by ecologically sustainable, independent and socially just energy. This comparative analysis identifies economic, political and social drivers that shaped the adoption of RE policy in two significantly different economies, Germany and Australia, with strong and weak commitments to RE respectively. Two complementary political-economy theories frame the document-based analysis. Régulation Theory, inspired by Marxist ideas and strongly influenced by contemporary economic problems, provides the background to explore the social relationships contributing the adoption of RE within the macro-economy. Varieties of Capitalism theory, a more recently developed micro-economic approach, examines the nature of state-firm relationships. Together these approaches provide a comprehensive lens of analysis. Germany’s energy policy transformed substantially over the second half of the last century. The development is characterised by the coordination of societal, environmental and industrial demands throughout the advancement of capitalist regimes. In the Fordist regime, mass production based on coal drove Germany’s astounding economic recovery during the post-war period. Economic depression and the instability of institutional arrangements necessitated the impulsive seeking of national security and energy independence. During the postwar Flexi-Fordist period, quality-based production, innovation and technology-based competition schemes, particularly with regard to political power structures in and across Europe, favoured the adoption of RE. Innovation, knowledge and education were institutionalized, leading to the legislation of environmental concerns. Lastly the establishment of government-industry-based coordinative programs supported the phase out of nuclear power and the increased adoption of RE during the last decade. Australia’s energy policy is shaped by the country’s richness in mineral resources. Energy policy largely served coal mining, historically and currently one of the most capital-intense industry. Assisted by the macro-economic dimensions of institutional arrangements, social and financial capital is orientated towards the export-led and strongly demand-oriented economy. Here energy policy serves the maintenance of capital accumulation in the mining sector and the emerging Asian economies. The adoption of supportive renewable energy policy would challenge the distinct role of the mining industry within the (neo)-liberal market economy. The state’s protective role of the mining sector has resulted in weak commitment to RE policy and investment uncertainty in the energy sector. Recent developments, driven by strong public support for RE, emphasize the sense of community in urban and rural areas and the emergence of a bottom-up approach to adopt renewables. Thus, political economy frameworks on both the macro-economic (Regulation Theory) and micro-economic (Varieties of Capitalism theory) scales can together explain the strong commitment to RE in Germany vis-à-vis the weak commitment in Australia.

Keywords: political economy, regulation theory, renewable energy, social relationships, energy transitions

Procedia PDF Downloads 381
5993 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation

Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves

Abstract:

Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.

Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP

Procedia PDF Downloads 98
5992 Assessment of Impact of Manpower Training and Development in the Construction Industry

Authors: Olalekan Bamidele Aruleba

Abstract:

This research assessed the impact of manpower training and development in the construction industry. The aim is to determine the effect of training and development on employees for effective organizational growth in the construction industry to identify the training method for each category of employee in the construction industry, challenges to training and development of workers in the construction industry and impact of manpower training and development on employees and employers. Data for the study were obtained through a well-structured questionnaire administered to building professionals in Nigeria construction firm. Eighty (80) questionnaires were distributed among building professionals in three selected local governments within Ondo State and sixty-four (64) were returned. Data collected were analysed using descriptive statistics and ranking. Findings of the study revealed that in house training and in-service training methods were preferred by most construction industry. It concluded that the attitude of top management and lack of fund was seen as the significant challenges militating against training of employees. The study recommended that manpower training and development must be sustained by all stakeholders in the industry in order to improve workers' productivity; the organization should adopt the right method in training each category of employees and carry out the need assessment for training to avoid training wrong employees.

Keywords: construction, development, manpower, training

Procedia PDF Downloads 234
5991 An Example of University Research Driving University-Industry Collaboration

Authors: Stephen E. Cross, Donald P. McConnell

Abstract:

In the past decade, market pressures and decreasing U.S. federal budgets for science and technology have led to a fundamental change in expectations for corporate investments in innovation. The trend to significant, sustained corporate research collaboration with major academic centres has called for rethinking the balance between academic and corporate roles in these relationships. The Georgia Institute of Technology has developed a system-focused strategy for transformational research focused on grand challenges in areas of importance both to faculty and to industry collaborators. A model of an innovation ecosystem is used to guide both research and university-industry collaboration. The paper describes the strategy, the model, and the results to date including the benefits both to university research and industry collaboration. Key lessons learned are presented based on this experience.

Keywords: ecosystem, industry collaboration, innovation, research strategy

Procedia PDF Downloads 420
5990 Lead and Cadmium Spatial Pattern and Risk Assessment around Coal Mine in Hyrcanian Forest, North Iran

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

In this study, the effect of coal mining activities on lead and cadmium concentrations and distribution in soil was investigated in Hyrcanian forest, North Iran. 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity; considered as the controlled area. In order to investigate soil lead and cadmium concentration, one sample was taken from the 0-10 cm in each plot. To study the spatial pattern of soil properties and lead and cadmium concentrations in the mining area, an area of 80×80m2 (the mine as the center) was considered and 80 soil samples were systematic-randomly taken (10 m intervals). Geostatistical analysis was performed via Kriging method and GS+ software (version 5.1). In order to estimate the impact of coal mining activities on soil quality, pollution index was measured. Lead and cadmium concentrations were significantly higher in mine area (Pb: 10.97±0.30, Cd: 184.47±6.26 mg.kg-1) in comparison to control area (Pb: 9.42±0.17, Cd: 131.71±15.77 mg.kg-1). The mean values of the PI index indicate that Pb (1.16) and Cd (1.77) presented slightly polluted. Results of the NIPI index showed that Pb (1.44) and Cd (2.52) presented slight pollution and moderate pollution respectively. Results of variography and kriging method showed that it is possible to prepare interpolation maps of lead and cadmium around the mining areas in Hyrcanian forest. According to results of pollution and risk assessments, forest soil was contaminated by heavy metals (lead and cadmium); therefore, using reclamation and remediation techniques in these areas is necessary.

Keywords: traditional coal mining, heavy metals, pollution indicators, geostatistics, Caspian forest

Procedia PDF Downloads 178
5989 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms

Authors: Naina Mahajan, Bikram Pal Kaur

Abstract:

The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.

Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool

Procedia PDF Downloads 338
5988 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry

Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari

Abstract:

The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.

Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining

Procedia PDF Downloads 77
5987 Phillips Curve Estimation in an Emerging Economy: Evidence from Sub-National Data of Indonesia

Authors: Harry Aginta

Abstract:

Using Phillips curve framework, this paper seeks for new empirical evidence on the relationship between inflation and output in a major emerging economy. By exploiting sub-national data, the contribution of this paper is threefold. First, it resolves the issue of using on-target national inflation rates that potentially causes weakening inflation-output nexus. This is very relevant for Indonesia as its central bank has been adopting inflation targeting framework based on national consumer price index (CPI) inflation. Second, the study tests the relevance of mining sector in output gap estimation. The test for mining sector is important to control for the effects of mining regulation and nominal effects of coal prices on real economic activities. Third, the paper applies panel econometric method by incorporating regional variation that help to improve model estimation. The results from this paper confirm the strong presence of Phillips curve in Indonesia. Positive output gap that reflects excess demand condition gives rise to the inflation rates. In addition, the elasticity of output gap is higher if the mining sector is excluded from output gap estimation. In addition to inflation adaptation, the dynamics of exchange rate and international commodity price are also found to affect inflation significantly. The results are robust to the alternative measurement of output gap

Keywords: Phillips curve, inflation, Indonesia, panel data

Procedia PDF Downloads 122
5986 Software Quality Measurement System for Telecommunication Industry in Malaysia

Authors: Nor Fazlina Iryani Abdul Hamid, Mohamad Khatim Hasan

Abstract:

Evolution of software quality measurement has been started since McCall introduced his quality model in year 1977. Starting from there, several software quality models and software quality measurement methods had emerged but none of them focused on telecommunication industry. In this paper, the implementation of software quality measurement system for telecommunication industry was compulsory to accommodate the rapid growth of telecommunication industry. The quality value of the telecommunication related software could be calculated using this system by entering the required parameters. The system would calculate the quality value of the measured system based on predefined quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). Thus, software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry.

Keywords: software quality, quality measurement, quality model, quality metric, net satisfaction index

Procedia PDF Downloads 592
5985 Using Data Mining Technique for Scholarship Disbursement

Authors: J. K. Alhassan, S. A. Lawal

Abstract:

This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.

Keywords: classification, data mining, decision tree, scholarship

Procedia PDF Downloads 375
5984 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model

Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda

Abstract:

Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.

Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.

Procedia PDF Downloads 76
5983 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: semantic links, data mining, linked data, SKOS

Procedia PDF Downloads 179
5982 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
5981 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 123
5980 Heritage Value and Industrial Tourism Potential of the Urals, Russia

Authors: Anatoly V. Stepanov, Maria Y. Ilyushkina, Alexander S. Burnasov

Abstract:

Expansion of tourism, especially after WWII, has led to significant improvements in the regional infrastructure. The present study has revealed a lot of progress in the advancement of industrial heritage narrative in the Central Urals. The evidence comes from the general public’s increased fascination with some of Europe’s oldest mining and industrial sites, and the agreement of many stakeholders that the Urals industrial heritage should be preserved. The development of tourist sites in Nizhny Tagil and Nevyansk, gold-digging in Beryosovsky, gemstone search in Murzinka, and the progress with the Urals Gemstone Ring project are the examples showing the immense opportunities of industrial heritage tourism development in the region that are still to be realized. Regardless of the economic future of the Central Urals, whether it will remain an industrial region or experience a deeper deindustrialization, the sprouts of the industrial heritage tourism should be advanced and amplified for the benefit of local communities and the tourist community at large as it is hard to imagine a more suitable site for the discovery of industrial and mining heritage than the Central Urals Region of Russia.

Keywords: industrial heritage, mining heritage, Central Urals, Russia

Procedia PDF Downloads 136
5979 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 416
5978 Innovation as Entrepreneurial Drives in the Romanian Automotive Industry

Authors: Alina Petronela Negrea, Valentin Cojanu

Abstract:

The article examines the synergy between innovation and entrepreneurship by means of a qualitative research on actors in the automotive industry in the Romanian southern region, Muntenia. The region is of particular interest because most of the industry suppliers are located there, as well as because it gathers the full range of key actors involved in the innovation process. The research design aims (1) to reflect entrepreneurs’ approach to and perception on innovation; (2) to underline forces driving or stifling innovation in the automotive industry; and (3) to evaluate the awareness of the existing knowledge database and the communication channels through which it is transferred within and between innovation networks. Empirical evidence results from triangula¬tion of three data collection methods: statistical data and other publicly available materials; semi - structured inter¬views, and experiential visits. The conclusions emphasize the convergent opinion of the entrepreneurs about the vital role of innovation in their investment plans.

Keywords: automotive industry, entrepreneurship, innovation, Romania

Procedia PDF Downloads 549
5977 A Study on the Strategy for Domestic Space Industry Activation

Authors: Hangil Park, Hwayeon Song, Jingyung Sim

Abstract:

In this study, a business ecosystem of a domestic space industry is comprehensively analyzed to derive the influence factors. The priority level of each element as well as the disparity between the ideal and reality are investigated through a literature review and an expert survey. The three major influence factors determined are: (a) investment scale and approach, (b) propulsion system, and (c) industrialization with overseas expansion. Related issues based on the current status are evaluated, followed by a proposed activation strategy. This research's findings offer a direction for R&D budget allocation and law system maintenance for the activation of the domestic space industry.

Keywords: space industry, activation, strategy, business ecosystem

Procedia PDF Downloads 368
5976 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. Despite it is very important, the research study on schedule waste management is very little in the highway industry even though there is a rapid growth of highway operation in the Asian region. It should be noted that there are many unnoticeable wastes in highway industry that should be managed properly. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as compared to factories in which the factories are located on specified areas whereas, highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations, 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on schedule waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of scheduled waste such as cancer, throat irritation and respiration problem.

Keywords: Asia region, environment, highway industry, scheduled waste

Procedia PDF Downloads 422
5975 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 54
5974 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
5973 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction

Authors: Patricia Jiménez, Rafael Corchuelo

Abstract:

Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.

Keywords: information extraction, search heuristics, semi-structured documents, web mining.

Procedia PDF Downloads 335
5972 Counterfeit Drugs Prevention in Pharmaceutical Industry with RFID: A Framework Based On Literature Review

Authors: Zeeshan Hamid, Asher Ramish

Abstract:

The purpose of this paper is to focus on security and safety issues facing by pharmaceutical industry globally when counterfeit drugs are in question. Hence, there is an intense need to secure and authenticate pharmaceutical products in the emerging counterfeit product market. This paper will elaborate the application of radio frequency identification (RFID) in pharmaceutical industry and to identify its key benefits for patient’s care. The benefits are: help to co-ordinate the stream of supplies, accuracy in chains of supplies, maintaining trustworthy information, to manage the operations in appropriate and timely manners and finally deliver the genuine drug to patient. It is discussed that how RFID supported supply chain information sharing (SCIS) helps to combat against counterfeit drugs. And a solution how to tag pharmaceutical products; since, some products prevent RFID implementation in this industry. In this paper, a proposed model for pharma industry distribution suggested to combat against the counterfeit drugs when they are in supply chain.

Keywords: supply chain, RFID, pharmaceutical industry, counterfeit drugs, patients care

Procedia PDF Downloads 313
5971 Effective Leadership in the Engineering, Technology, and Construction Industry

Authors: David W. Farler, Perry Haan

Abstract:

This paper explores what effective leadership is being employed in the engineering, technology, and construction (ETC) industry. Organizations need to understand what character traits are being used and what leadership styles work to promote sustainability and improve the triple bottom line. This paper looks at multiple publications on leadership and character traits effective for managers and leaders in the ETC industry. The ETC industry is a trillion-dollar industry, and understanding ways to improve leadership is vital for organizations' successful outcomes. With improvements to the managerial and leadership, there could be ways for organizations to profit more and cut down on cost costs. Finding ways to improve motivation can help organizations improve safety, improve culture, and increase employee motivation. From the research, this paper has found that situational leadership, transformational, and transactional are the most effective leadership styles that individuals can use in the ETC industry for leadership. Character traits that are the most effective have been identified in this research paper. This research has contributed to the ways individuals who start in the engineering and technology industry can improve upon their leadership skills as they are promoted into managerial and leadership roles. The need for managerial positions in the ETC industry, such as project and construction managers, to improve is vital for successful outcomes and creating a high-level performance. The study helps provide a gap in the limited research available to improve ETC leadership for all organizations' present and future.

Keywords: construction, effective leadership, engineering, technology

Procedia PDF Downloads 140
5970 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects

Authors: Victor Radich, Tania Basso, Regina Moraes

Abstract:

Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.

Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring

Procedia PDF Downloads 85
5969 An Integrated Emergency Management System for the Tourism Industry in Oman

Authors: Majda Al Salti

Abstract:

Tourism industry is considered globally as one of the leading industries due to its noticeable contribution to countries' gross domestic product (GDP) and job creation. However, tourism is vulnerable to crisis and disaster that requires its preparedness. With its limited capabilities, there is a need to improve links and the understanding between the tourism industry and the emergency services, thus facilitating future emergency response to any potential incident. This study aims to develop the concept of an integrated emergency management system for the tourism industry. The study used face-to-face semi-structured interviews to evaluate the level of crisis and disaster preparedness of the tourism industry in Oman. The findings suggested that there is a lack of understanding of crisis and disaster management, and hence preparedness level among Oman Tourism Authorities appears to be under-expectation. Therefore, a clear need for tourism sector inter- and intra-integration and collaboration is important in the pre-disaster stage. The need for such integrations can help the tourism industry in Oman to prepare for future incidents as well as identifying its requirements in time of crisis for effective response.

Keywords: tourism, emergency services, crisis, disaster

Procedia PDF Downloads 119
5968 What the Future Holds for Social Media Data Analysis

Authors: P. Wlodarczak, J. Soar, M. Ally

Abstract:

The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.

Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning

Procedia PDF Downloads 423
5967 Gender Diversity Practices in Talent Management: An Exploratory Study in the Space Industry in Luxembourg

Authors: K. Usanova

Abstract:

This study contributes to the conceptual and empirical understanding of how gender diversity management (GDM) is integrated into talent management (TM). Following the grounded theory, we interviewed 40 HR managers and talents from the space industry in Luxembourg. We provide a nuanced picture of what attitude on the GDM in TM organizations have, what strategies and practices they conduct, and how they differ from each other. Based on these differences, we developed three types of GDM integration to TM and explained the talents’ view on this issue. To the author's best knowledge, this study is the first empirical investigation of GDM in TM in the space industry that integrates both the TM executives' and TM receivers' views on gender equality in TM.

Keywords: gender diversity management, high-technology industry, human resource management, talent management

Procedia PDF Downloads 133