Search results for: large language models (LLMS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16186

Search results for: large language models (LLMS)

15916 “Self-efficacy, Task value and Metacognitive Self-regulation as Predictors of English Language Achievement”

Authors: Omar Baissane and, Hassan Zaid

Abstract:

The purpose of this study was to determine whether self-efficacy, task value, and metacognitive self-regulation predict students’ English language achievement among Vietnamese high school students. In this non-experimental quantitative study, 403 Vietnamese random participants were required to fill out the Motivated Strategies for Learning Questionnaire to measure self-efficacy, task value and metacognitive self-regulation. Criterion for English language achievement was the final grade that students themselves reported. The results revealed that, unlike metacognitive self-regulation, self-efficacy and task value were significantly correlated with language achievement. Moreover, the findings showed that self-efficacy was the only significant predictor of language achievement.

Keywords: language achievement, metacognitive self-regulation, predictor, self-efficacy, task value

Procedia PDF Downloads 97
15915 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 27
15914 Assessment of the Illustrated Language Activities of the Portage Guide to Early Education

Authors: Ofelia A. Damag

Abstract:

The study was focused on the development and assessment of the illustrated language activities of the 1996 Edition of the Portage Guide to Early Education. It determined the extent of appropriateness, applicability, time efficiency and aesthetics of the illustrated language activities to be used as instructional material not only by teachers, but parents and caregivers as well. The eclectic research design was applied in this study using qualitative and quantitative methods. To determine the applicability and time efficiency of the study, a try out was done. Since the eclectic research design was used, it made use of a researcher-made survey questionnaire and focus group discussion. Analysis of the data was done through weighted mean and ANOVA. The respondents of the study were representatives of Special Education (SPED) teachers, caregivers and parents of a special-needs child, particularly with difficulties in learning basic language skills. The results of the study show that a large number of respondents are SPED teachers and caregivers and are mostly college graduates. Many of them have earned units towards Master’s studies. Moreover, a majority of the respondents have not attended seminars or in-service training in early intervention for them to be more competent in the area of specialization. It is concluded that the illustrated language activities under review in this study are appropriate, applicable, time efficient and aesthetic for use as a tool in teaching. The recommendations are focused on the advocacy for SPED teachers, caregivers and parents of special-needs children to be more consistent in the implementation of the new instructional materials as an aid in an intervention program.

Keywords: illustrated language activities, inclusion, portage guide to early education, special educational needs

Procedia PDF Downloads 159
15913 Validating the Arabic Communicative Development Inventory for Assessing the Development of Language in Arabic-Speaking Children

Authors: Alshaimaa Abdelwahab, Allegra Cattani, Caroline Floccia

Abstract:

Assessing children’s language is fundamental for changing their developmental outcome as it gives a chance for a quick and early intervention with the suitable planning and monitoring program. The importance of language assessment lies in helping to find the right test fit for purpose, in addition to achievement and proficiency. This study examines the validity of a new Arabic assessment tool, the Arabic Communicative Development Inventory ‘Arabic CDI’. It assesses the development of language in Arabic children in different Arabic countries, allowing to detect children with language delay. A concurrent validity is set to compare the Arabic CDI to the Arabic Language test. Twenty-three typically developing Egyptian healthy children and their mothers participated in this study. Their age is 24 months (+ or -) two weeks. The sample included 13 males and 10 females. Mothers completed the Arabic CDI either before or after the Arabic Language Test was conducted with the child. The score for comprehension in the Arabic CDI (M= 52.7, SD= 9.7) and words understood in the Arabic Language Test (M= 59.6, SD= 12.5) were strongly and positively correlated (r= .62, p= .002). At the same time, the scores for production in the Arabic CDI (M= 38.4, SD= 14.8) and words expressed in the Arabic Language Test (M= 52.1, SD= 16.3) were also strongly and positively correlated (r= .82, p= .000). The new Arabic CDI is an adequate tool for assessing the development of comprehension and production at Arabic children. In addition, it could be used for detecting children with language impairment. Standardization of the Arabic CDI across 18 different Arabic dialects in children aged 8 to 30 months is underway.

Keywords: Arabic CDI, assessing children, language development, language impairment

Procedia PDF Downloads 469
15912 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 114
15911 Socioeconomic Status and Gender Influence on Linguistic Change: A Case Study on Language Competence and Confidence of Multilingual Minority Language Speakers

Authors: Stefanie Siebenhütter

Abstract:

Male and female speakers use language differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors. It specifically examines how Kui minority language use and competence are conditioned by the variable of gender and discusses potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes. Moreover, it discusses whether women in Kui society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It discusses whether societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal current Kui speaking preferences and give predictions on the prospective language use, which is a stable situation of multilingualism because the current Kui speakers will socialize and teach the prospective Kui speakers in the near future. It further confirms that Lao is losing importance in Kui speaker’s (female’s) daily life.

Keywords: gender, identity construction, language change, minority language, multilingualism, sociolinguistics, social Networks

Procedia PDF Downloads 177
15910 Investigating Teachers’ Perceptions about the Use of Technology in Second Language Learning at Universities in Pakistan

Authors: Nadir Ali Mugheri

Abstract:

This study has explored the perceptions of English language teachers (ELT) regarding use of technology in learning English as a second language (L2) at Universities in Pakistan. In this regard, 200 ELT teachers from 80 leading universities were selected through a judgmental sampling method. Results established that most of the teachers supported integration and incorporation of technology in the language classroom so as to teach L2 in an effective and efficient way. This study unearthed that the teachers termed the use of technology in learning English as a second language (ESL) as a positive step towards enhancing the learning capabilities and improving the personal traits of the students or learners. Findings suggest that the integration of technology in the language learning makes the learners within the classroom active and enthusiastic, and the teachers need to be equipped with the latest knowledge of mobile assisted language learning (MALL) and computer assisted language learning (CALL) so that they may ensure use of this innovative technology in their teaching practices. Results also indicated that the technology has proved itself a stimulus for improving language in the ELT milieu. The use of technology helps teachers develop themselves professionally. This study discovered that there are many determinants that make teaching and learning within the classroom efficacious, while the use of technology is one of them. Data was collected through qualitative design in order to get a complete depiction. Semi-structured interviews were conducted and analyzed through thematic analysis.

Keywords: english language teaching, computer assisted language learning, use of technology, thematic analysis

Procedia PDF Downloads 69
15909 Remodeling English Language Arts Lessons: Critical Thinking- Based Pedagogy

Authors: Majed Al-Quran

Abstract:

Language arts, as a domain of learning, principally covers the study of literature and the arts of reading and writing. These three areas deal with the art of conceptualizing and representing in language how people live and might live their lives. And all three are significantly concerned with gaining command of language and expression. Of course, there is no command of language separate from the command of thought. The paper addresses how EFL learners can develop insight and sense into what can be earned from literature and a sense of putting experiences into words. It further shows how critical thinking-based instruction helps students develop command of their own ideas, which consequently requires command over the words in which they express them. Critical thinking stipulates that in words and ideas, there is the power to create systems of beliefs and multiple conceptions of life. Remodeling language lessons aim at overcoming the challenge of stimulating learners to cultivate a new and different conception of language skills, including those of reading and writing.

Keywords: language arts, remodeling, critical thinking, pedagogy

Procedia PDF Downloads 76
15908 Investigating the Potential of VR in Language Education: A Study of Cybersickness and Presence Metrics

Authors: Sakib Hasn, Shahid Anwar

Abstract:

This study highlights the vital importance of assessing the Simulator Sickness Questionnaire and presence measures as virtual reality (VR) incorporation into language teaching gains popularity. To address user discomfort, which prevents efficient learning in VR environments, the measurement of SSQ becomes crucial. Additionally, evaluating presence metrics is essential to determine the level of engagement and immersion, both crucial for rich language learning experiences. This paper designs a VR-based Chinese language application and proposes a thorough test technique aimed at systematically analyzing SSQ and presence measures. Subjective tests and data analysis were carried out to highlight the significance of addressing user discomfort in VR language education. The results of this study shed light on the difficulties posed by user discomfort in VR language learning and offer insightful advice on how to improve VR language learning applications. Furthermore, the outcome of the research explores ‘VR-based language education,’ ‘inclusive language learning platforms," and "cross-cultural communication,’ highlighting the potential for VR to facilitate language learning across diverse cultural backgrounds. Overall, the analysis results contribute to the enrichment of language learning experiences in the virtual realm and underscore the need for continued exploration and improvement in this field.

Keywords: virtual reality (VR), language education, simulator sickness questionnaire, presence metrics, VR-based Chinese language education

Procedia PDF Downloads 80
15907 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
15906 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners

Authors: A. van Staden, M. M. Coetzee

Abstract:

Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.

Keywords: motivation, self-concept, language learning, English second language learners (L2)

Procedia PDF Downloads 268
15905 Higher Language Education in Australia: Uncovering Language Positioning

Authors: Mobina Sahraee Juybari

Abstract:

There are around 300 languages spoken in Australia, and more than one-fifth of the population speaks a language other than English at home. The presence of international students in schools raises this number still further. Although the multilingual and multicultural status of Australia has been acknowledged by the government in education policy, the strong focus on English in institutional settings threatens the maintenance and learning of other languages. This is particularly true of universities’ language provisions. To cope with the financial impact of Covid-19, the government has cut funding for a number of Asian languages, such as Indonesian, Japanese and Chinese. This issue threats the maintenance of other languages in Australia and leaves students unprepared for the future job market. By taking account of the current reality of Australia’s diverse cultural and lingual makeup, this research intends to uncover the positioning of languages by having a historical look at Australia’s language policy and examining the value of languages and the probable impact of Covid-19 on the place of languages taught in Australian universities. A qualitative study will be adopted with language program tutors and course coordinators, with semi-structured interviews and government language policy analysis. This research hopes to provide insights into both the maintenance and learning of international language programs in tertiary language education in Australia and more widely.

Keywords: Australia, COVID-19, higher education sector, language maintenance, language and culture diversity

Procedia PDF Downloads 105
15904 Strategies for the Development of Cultural Intelligence in the Foreign Language Classroom

Authors: Azucena Yearby

Abstract:

This study examined if cultural intelligence can be developed through the study of a foreign language. Specifically, the study sought to determine if strategies such as the Arts/History, Vocabulary and Real or Simulated Experiences have an effect on the development of cultural intelligence in the foreign language classroom. Students enrolled in Spanish 1114 or level 1 Spanish courses at the University of Central Oklahoma (UCO) completed Linn Van Dyne’s 20-item questionnaire that measures Cultural Intelligence (CQ). Results from the study indicated a slight cultural intelligence increase in those students who received an intervention. Therefore, the study recommended that foreign language educators implement the considered strategies in the classroom in order to increase their students’ cultural intelligence.

Keywords: cultural competency, cultural intelligence, foreign language, language

Procedia PDF Downloads 466
15903 Building an Opinion Dynamics Model from Experimental Data

Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle

Abstract:

Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.

Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule

Procedia PDF Downloads 109
15902 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 450
15901 Evaluating Language Loss Effect on Autobiographical Memory by Examining Memory Phenomenology in Bilingual Speakers

Authors: Anastasia Sorokina

Abstract:

Graduate language loss or attrition has been well documented in individuals who migrate and become emersed in a different language environment. This phenomenon of first language (L1) attrition is an example of non-pathological (not due to trauma) and can manifest itself in frequent pauses, search for words, or grammatical errors. While the widely experienced loss of one’s first language might seem harmless, there is convincing evidence from the disciplines of Developmental Psychology, Bilingual Studies, and even Psychotherapy that language plays a crucial role in the memory of self. In fact, we remember, store, and share personal memories with the help of language. Dual-Coding Theory suggests that language memory code deterioration could lead to forgetting. Yet, no one has investigated a possible connection between language loss and memory. The present study aims to address this research gap by examining a corpus of 1,495 memories of Russian-English bilinguals who are on a continuum of L1 (first language) attrition. Since phenomenological properties capture how well a memory is remembered, the following descriptors were selected - vividness, ease of recall, emotional valence, personal significance, and confidence in the event. A series of linear regression statistical analyses were run to examine the possible negative effects of L1 attrition on autobiographical memory. The results revealed that L1 attrition might compromise perceived vividness and confidence in the event, which is indicative of memory deterioration. These findings suggest the importance of heritage language maintenance in immigrant communities who might be forced to assimilate as language loss might negatively affect the memory of self.

Keywords: L1 attrition, autobiographical memory, language loss, memory phenomenology, dual coding

Procedia PDF Downloads 119
15900 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the e-learning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.

Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery

Procedia PDF Downloads 561
15899 Teaching Vietnamese as the Official Language for Indigenous Preschool Children in Lai Chau, Vietnam: Exploring Teachers' Beliefs about Second Language Acquisition

Authors: Thao Thi Vu, Libby Lee-Hammond, Andrew McConney

Abstract:

In Vietnam, the Vietnamese language is normally used as the language of instruction. The dominance of this language places children who have a different first language such as Indigenous children at a disadvantage when commencing school. This study explores preschool teachers’ beliefs about second language acquisition in Lai Chau provinces where is typical of highland provinces of Vietnam and the proportion of Indigenous minority groups in high. Data were collected from surveys with both closed-end questions and opened-end questions. The participants in this study were more than 200 public preschool teachers who come from eight different districts in Lai Chau. An analysis of quantitative data survey is presented to indicate several practical implications, such as the connection between teachers’ knowledge background that gained from their pre-service and in-service teacher education programs regarding second language teaching for Indigenous children and their practice. It also explains some factors that influence teachers’ beliefs and perspective about Indigenous children and pedagogies in their classes.

Keywords: indigenous children, learning Vietnamese, preschool, teachers’ beliefs

Procedia PDF Downloads 424
15898 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms

Authors: Samantha Rix

Abstract:

The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.

Keywords: cognitive processing, language learners, language proficiency, learning strategies

Procedia PDF Downloads 475
15897 Ethnolinguistic Otherness: The Vedda Language (Baasapojja) of Indigenous Adivasi (Veddas) of Dambana in Sri Lanka

Authors: Nimasha Malalasekera

Abstract:

Working with the indigenous Adivasi (Vedda) community of Dambana in the district of Badulla in Sri Lanka, this research documents linguistic data to address language and cultural endangerment. The ancestral language of Adivasi has undergone sustained restructuration over a long historical period due to its contact with Sinhala, an Indo-Aryan language spoken by the majority Sinhalese. The Vedda language is highly endangered today. At present, all speakers of the Vedda language spoken in Dambana are Adivasi men in the parent generation, who are Sinhala-Vedda bilinguals. Adivasi women and children do not speak the Vedda language but Sinhala in everyday life. Women can understand the Vedda language and would respond to a Vedda language utterance in Sinhala. The use of the Vedda language is largely restricted to self-ascribing Adivasi men who employ it in the context of cultural tourism in Dambana to index ethnolinguistic otherness. Adivasi of Dambana often refers to this distinct linguistic code that they speak as baasapojja or language. This research employs a cooperative model of ethnographic documentation to explore the interrelations between discursive practices, linguistic structures, and linguistic (and broader sociocultural) ideologies in this community. The Vedda language has been previously identified as a dialect of Sinhala or a creole emerging in the contact between Sinhala and the ancestral Vedda language. This paper analyzes the current language endangerment context of bilingual Adivasi members that allows the birth of a mixed language. The aim of this research is to preserve ongoing linguistic innovation among this endangered language speech community. It contributes to the appreciation of creative cultural and linguistic production of a stigmatized minuscule indigenous community of South Asia that strives to assert a distinct linguistic and cultural identity from the dominant populations.

Keywords: Vedda language, language endangerment, mixed languages, indigenous identity

Procedia PDF Downloads 104
15896 The Influence of Language and Background Culture on Speakers from the Viewpoint of Gender and Identity

Authors: Yuko Tomoto

Abstract:

The purpose of this research is to examine the assumption that female bilingual speakers more often change the way they talk or think depending on the language they use compared with male bilingual speakers. The author collected data through questionnaires on 241 bilingual speakers. Also, in-depth interview surveys were conducted with 13 Japanese/English bilingual speakers whose native language is Japanese and 16 English/Japanese bilingual speakers whose native language is English. The results indicate that both male and female bilingual speakers are more or less influenced consciously and unconsciously by the language they use, as well as by the background cultural values of each language. At the same time, it was found that female speakers are much more highly affected by the language they use, its background culture and also by the interlocutors they were talking to. This was probably due to the larger cultural expectations on women. Through conversations, speakers are not only conveying a message but also attempting to express who they are, and what they want to be like. In other words, they are constantly building up and updating their own identities by choosing the most appropriate language and descriptions to express themselves in the dialogues. It has been claimed that the images of ideal L2 self could strongly motivate learners. The author hopes to make the best use of the fact that bilingual speakers change their presence depending on the language they use, in order to motivate Japanese learners of English, especially female learners from the viewpoint of finding their new selves in English.

Keywords: cultural influence, gender expectation, language learning, L2 self

Procedia PDF Downloads 422
15895 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 106
15894 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 435
15893 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 97
15892 Understanding the Heart of the Matter: A Pedagogical Framework for Apprehending Successful Second Language Development

Authors: Cinthya Olivares Garita

Abstract:

Untangling language processing in second language development has been either a taken-for-granted and overlooked task for some English language teaching (ELT) instructors or a considerable feat for others. From the most traditional language instruction to the most communicative methodologies, how to assist L2 learners in processing language in the classroom has become a challenging matter in second language teaching. Amidst an ample array of methods, strategies, and techniques to teach a target language, finding a suitable model to lead learners to process, interpret, and negotiate meaning to communicate in a second language has imposed a great responsibility on language teachers; committed teachers are those who are aware of their role in equipping learners with the appropriate tools to communicate in the target language in a 21stcentury society. Unfortunately, one might find some English language teachers convinced that their job is only to lecture students; others are advocates of textbook-based instruction that might hinder second language processing, and just a few might courageously struggle to facilitate second language learning effectively. Grounded on the most representative empirical studies on comprehensible input, processing instruction, and focus on form, this analysis aims to facilitate the understanding of how second language learners process and automatize input and propose a pedagogical framework for the successful development of a second language. In light of this, this paper is structured to tackle noticing and attention and structured input as the heart of processing instruction, comprehensible input as the missing link in second language learning, and form-meaning connections as opposed to traditional grammar approaches to language teaching. The author finishes by suggesting a pedagogical framework involving noticing-attention-comprehensible-input-form (NACIF based on their acronym) to support ELT instructors, teachers, and scholars on the challenging task of facilitating the understanding of effective second language development.

Keywords: second language development, pedagogical framework, noticing, attention, comprehensible input, form

Procedia PDF Downloads 28
15891 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 336
15890 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 160
15889 Content Based Instruction: An Interdisciplinary Approach in Promoting English Language Competence

Authors: Sanjeeb Kumar Mohanty

Abstract:

Content Based Instruction (CBI) in English Language Teaching (ELT) basically helps English as Second Language (ESL) learners of English. At the same time, it fosters multidisciplinary style of learning by promoting collaborative learning style. It is an approach to teaching ESL that attempts to combine language with interdisciplinary learning for bettering language proficiency and facilitating content learning. Hence, the basic purpose of CBI is that language should be taught in conjunction with academic subject matter. It helps in establishing the content as well as developing language competency. This study aims at supporting the potential values of interdisciplinary approach in promoting English Language Learning (ELL) by teaching writing skills to a small group of learners and discussing the findings with the teachers from various disciplines in a workshop. The teachers who are oriented, they use the same approach in their classes collaboratively. The inputs from the learners as well as the teachers hopefully raise positive consciousness with regard to the vast benefits that Content Based Instruction can offer in advancing the language competence of the learners.

Keywords: content based instruction, interdisciplinary approach, writing skills, collaborative approach

Procedia PDF Downloads 277
15888 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 54
15887 Greek Teachers' Understandings of Typical Language Development and of Language Difficulties in Primary School Children and Their Approaches to Language Teaching

Authors: Konstantina Georgali

Abstract:

The present study explores Greek teachers’ understandings of typical language development and of language difficulties. Its core aim was to highlight that teachers need to have a thorough understanding of educational linguistics, that is of how language figures in education. They should also be aware of how language should be taught so as to promote language development for all students while at the same time support the needs of children with language difficulties in an inclusive ethos. The study, thus argued that language can be a dynamic learning mechanism in the minds of all children and a powerful teaching tool in the hands of teachers and provided current research evidence to show that structural and morphological particularities of native languages- in this case, of the Greek language- can be used by teachers to enhance children’s understanding of language and simultaneously improve oral language skills for children with typical language development and for those with language difficulties. The research was based on a Sequential Exploratory Mixed Methods Design deployed in three consecutive and integrative phases. The first phase involved 18 exploratory interviews with teachers. Its findings informed the second phase involving a questionnaire survey with 119 respondents. Contradictory questionnaire results were further investigated in a third phase employing a formal testing procedure with 60 children attending Y1, Y2 and Y3 of primary school (a research group of 30 language impaired children and a comparison group of 30 children with typical language development, both identified by their class teachers). Results showed both strengths and weaknesses in teachers’ awareness of educational linguistics and of language difficulties. They also provided a different perspective of children’s language needs and of language teaching approaches that reflected current advances and conceptualizations of language problems and opened a new window on how best they can be met in an inclusive ethos. However, teachers barely used teaching approaches that could capitalize on the particularities of the Greek language to improve language skills for all students in class. Although they seemed to realize the importance of oral language skills and their knowledge base on language related issues was adequate, their practices indicated that they did not see language as a dynamic teaching and learning mechanism that can promote children’s language development and in tandem, improve academic attainment. Important educational implications arose and clear indications of the generalization of findings beyond the Greek educational context.

Keywords: educational linguistics, inclusive ethos, language difficulties, typical language development

Procedia PDF Downloads 382