Search results for: inclusive speech recognition
2819 Quantum Cum Synaptic-Neuronal Paradigm and Schema for Human Speech Output and Autism
Authors: Gobinathan Devathasan, Kezia Devathasan
Abstract:
Objective: To improve the current modified Broca-Wernicke-Lichtheim-Kussmaul speech schema and provide insight into autism. Methods: We reviewed the pertinent literature. Current findings, involving Brodmann areas 22, 46, 9,44,45,6,4 are based on neuropathology and functional MRI studies. However, in primary autism, there is no lucid explanation and changes described, whether neuropathology or functional MRI, appear consequential. Findings: We forward an enhanced model which may explain the enigma related to autism. Vowel output is subcortical and does need cortical representation whereas consonant speech is cortical in origin. Left lateralization is needed to commence the circuitry spin as our life have evolved with L-amino acids and left spin of electrons. A fundamental species difference is we are capable of three syllable-consonants and bi-syllable expression whereas cetaceans and songbirds are confined to single or dual consonants. The 4 key sites for speech are superior auditory cortex, Broca’s two areas, and the supplementary motor cortex. Using the Argand’s diagram and Reimann’s projection, we theorize that the Euclidean three dimensional synaptic neuronal circuits of speech are quantized to coherent waves, and then decoherence takes place at area 6 (spherical representation). In this quantum state complex, 3-consonant languages are instantaneously integrated and multiple languages can be learned, verbalized and differentiated. Conclusion: We postulate that evolutionary human speech is elevated to quantum interaction unlike cetaceans and birds to achieve the three consonants/bi-syllable speech. In classical primary autism, the sudden speech switches off and on noted in several cases could now be explained not by any anatomical lesion but failure of coherence. Area 6 projects directly into prefrontal saccadic area (8); and this further explains the second primary feature in autism: lack of eye contact. The third feature which is repetitive finger gestures, located adjacent to the speech/motor areas, are actual attempts to communicate with the autistic child akin to sign language for the deaf.Keywords: quantum neuronal paradigm, cetaceans and human speech, autism and rapid magnetic stimulation, coherence and decoherence of speech
Procedia PDF Downloads 1952818 Characterising the Processes Underlying Emotion Recognition Deficits in Adolescents with Conduct Disorder
Authors: Nayra Martin-Key, Erich Graf, Wendy Adams, Graeme Fairchild
Abstract:
Children and adolescents with Conduct Disorder (CD) have been shown to demonstrate impairments in emotion recognition, but it is currently unclear whether this deficit is related to specific emotions or whether it represents a global deficit in emotion recognition. An emotion recognition task with concurrent eye-tracking was employed to further explore this relationship in a sample of male and female adolescents with CD. Participants made emotion categorization judgements for presented dynamic and morphed static facial expressions. The results demonstrated that males with CD, and to a lesser extent, females with CD, displayed impaired facial expression recognition in general, whereas callous-unemotional (CU) traits were linked to specific problems in sadness recognition in females with CD. A region-of-interest analysis of the eye-tracking data indicated that males with CD exhibited reduced fixation times for the eye-region of the face compared to typically-developing (TD) females, but not TD males. Females with CD did not show reduced fixation to the eye-region of the face relative to TD females. In addition, CU traits did not influence CD subjects’ attention to the eye-region of the face. These findings suggest that the emotion recognition deficits found in CD males, the worst performing group in the behavioural tasks, are partly driven by reduced attention to the eyes.Keywords: attention, callous-unemotional traits, conduct disorder, emotion recognition, eye-region, eye-tracking, sex differences
Procedia PDF Downloads 3212817 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2172816 Investigation of New Gait Representations for Improving Gait Recognition
Authors: Chirawat Wattanapanich, Hong Wei
Abstract:
This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.Keywords: convolutional image, lower knee, gait
Procedia PDF Downloads 2022815 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM
Authors: Rajpal Kaur, Pooja Choudhary
Abstract:
Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM
Procedia PDF Downloads 3842814 Performance Analysis of VoIP Coders for Different Modulations Under Pervasive Environment
Authors: Jasbinder Singh, Harjit Pal Singh, S. A. Khan
Abstract:
The work, in this paper, presents the comparison of encoded speech signals by different VoIP narrow-band and wide-band codecs for different modulation schemes. The simulation results indicate that codec has an impact on the speech quality and also effected by modulation schemes.Keywords: VoIP, coders, modulations, BER, MOS
Procedia PDF Downloads 5162813 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition
Authors: Mohamed Lotfy, Ghada Soliman
Abstract:
Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.Keywords: computer vision, pattern recognition, optical character recognition, deep learning
Procedia PDF Downloads 942812 Changing Pedagogy from Segregation to Inclusion: A Phenomenological Case Study of Ten Special Educators
Authors: Monique Somma
Abstract:
As special education service delivery models are shifting in order to better meet the academic and social rights of students with exceptionalities, teaching practices must also align with these goals. This phenomenological case study explored the change experiences of special education teachers who have transitioned from teaching in a self-contained special education class to an inclusive class setting. Ten special educators who had recently changed their teaching roles to inclusive classrooms, completed surveys and participated in a focus group. Of the original ten educators, five chose to participate further in individual interviews. Data collected from the three methods was examined and compared for common themes. Emergent themes included, support and training, attitudes and perceptions, inclusive practice, growth and change, and teaching practice. The overall findings indicated that despite their special education training, these educators were challenged by their own beliefs and expectations, the attitudes of others and systematic barriers in the education system. They were equally surprised by the overall social and academic performance of students with exceptionalities in inclusive classes, as well as, the social and academic growth and development of the other students in the class. Over the course of their careers, they all identified an overall personal pedagogical shift, to some degree or another, which they contributed to the successful experiences of inclusion they had. They also recognized that collaborating with others was essential for inclusion to be successful. The findings from this study suggest several implications for professional development and training needs specific to special education teachers moving into inclusive settings. Maximizing the skills of teachers with special education experience in a Professional Learning Community (PLC) and mentorship opportunities would be beneficial to all staffs working toward creating inclusive classrooms and schools.Keywords: attitudes and perceptions, inclusion of students with exceptionalities, special education teachers, teacher change
Procedia PDF Downloads 2332811 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.Keywords: bi-lingual, children who stutter, children with language impairment, hidden markov models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies
Procedia PDF Downloads 2172810 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4062809 A Principal’s Role in Creating and Sustaining an Inclusive Environment
Authors: Yazmin Pineda Zapata
Abstract:
Leading a complete school and culture transformation can be a daunting task for any administrator. This is especially true when change agents are advocating for inclusive reform in their schools. As leaders embark on this journey, they must ascertain that an inclusive environment is not a place, a classroom, or a resource setting; it is a place of acceptance nurtured by supportive and meaningful learning opportunities where all students can thrive. A qualitative approach, phenomenology, was used to investigate principals’ actions and behaviors that supported inclusive schooling for students with disabilities. Specifically, this study sought to answer the following research question: How do leaders develop and maintain inclusive education? Fourteen K-12 principals purposefully selected from various sources (e.g., School Wide Integrated Framework for Transformation (SWIFT), The Maryland Coalition for Inclusive Education (MCIE), The Arc of Texas Inclusion Works organization, The Association for Persons with Severe Handicaps (TASH), the CAL State Summer Institute in San Marcos, and the PEAK Parent Center and/or other recognitions were interviewed individually using a semi-structured protocol. Upon completion of data collection, all interviews were transcribed and marked using A priori coding to analyze the responses and establish a correlation among Villa and Thousand’s five organizational supports to achieve inclusive educational reform: Vision, Skills, Incentives, Resources, and Action Plan. The findings of this study reveal the insights of principals who met specific criteria and whose schools had been highlighted as exemplary inclusive schools. Results show that by implementing the five organizational supports, principals were able to develop and sustain successful inclusive environments where both teachers and students were motivated, made capable, and supported through the redefinition and restructuring of systems within the school. Various key details of the five variables for change depict essential components within these systems, which include quality professional development, coaching and modeling of co-teaching strategies, collaborative co-planning, teacher leadership, and continuous stakeholder (e.g., teachers, students, support staff, and parents) involvement. The administrators in this study proved the valuable benefits of inclusive education for students with disabilities and their typically developing peers. Together, along with their teaching and school community, school leaders became capable stakeholders that promoted the vision of inclusion, planned a structured approach, and took action to make it a reality.Keywords: Inclusive education, leaders, principals, shared-decision making, shared leadership, special education, sustainable change
Procedia PDF Downloads 732808 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4122807 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2872806 Emotional and Physiological Reaction While Listening the Speech of Adults Who Stutter
Authors: Xharavina V., Gallopeni F., Ahmeti K.
Abstract:
Stuttered speech is filled with intermittent sound prolongations and/or rapid part word repetitions. Oftentimes, these aberrant acoustic behaviors are associated with intermittent physical tension and struggle behaviors such as head jerks, arm jerks, finger tapping, excessive eye-blinks, etc. Additionally, the jarring nature of acoustic and physical manifestations that often accompanies moderate-severe stuttering may induce negative emotional responses in listeners, which alters communication between the person who stutters and their listeners. However, researches for the influence of negative emotions in the communication and for physical reaction are limited. Therefore, to compare psycho-physiological responses of fluent adults, while listening the speech of adults who speak fluency and adults who stutter, are necessary. This study comprises the experimental method, with total of 104 participants (average age-20 years old, SD=2.1), divided into 3 groups. All participants self-reported no impairments in speech, language, or hearing. Exploring the responses of the participants, there were used two records speeches; a voice who speaks fluently and the voice who stutters. Heartbeats and the pulse were measured by the digital blood pressure monitor called 'Tensoval', as a physiological response to the fluent and stuttering sample. Meanwhile, the emotional responses of participants were measured by the self-reporting questionnaire (Steenbarger, 2001). Results showed an increase in heartbeats during the stuttering speech compared with the fluent sample (p < 0.5). The listeners also self-reported themselves as more alive, unhappy, nervous, repulsive, sad, tense, distracted and upset when listening the stuttering words versus the words of the fluent adult (where it was reported to experience positive emotions). These data support the notions that speech with stuttering can bring a psycho-physical reaction to the listeners. Speech pathologists should be aware that listeners show intolerable physiological reactions to stuttering that remain visible over time.Keywords: emotional, physiological, stuttering, fluent speech
Procedia PDF Downloads 1432805 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 902804 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1272803 Speech Acts of Selected Classroom Encounters: Analyzing the Speech Acts of a Career Technology Lesson
Authors: Michael Amankwaa Adu
Abstract:
Effective communication in the classroom plays a vital role in ensuring successful teaching and learning. In particular, the types of language and speech acts teachers use shape classroom interactions and influence student engagement. This study aims to analyze the speech acts employed by a Career Technology teacher in a junior high school. While much research has focused on speech acts in language classrooms, less attention has been given to how these acts operate in non-language subject areas like technical education. The study explores how different types of speech acts—directives, assertives, expressives, and commissives—are used during three classroom encounters: lesson introduction, content delivery, and classroom management. This research seeks to fill the gap in understanding how teachers of non-language subjects use speech acts to manage classroom dynamics and facilitate learning. The study employs a mixed-methods design, combining qualitative and quantitative approaches. Data was collected through direct classroom observation and audio recordings of a one-hour Career Technology lesson. The transcriptions of the lesson were analyzed using John Searle’s taxonomy of speech acts, classifying the teacher’s utterances into directives, assertives, expressives, and commissives. Results show that directives were the most frequently used speech act, accounting for 59.3% of the teacher's utterances. These speech acts were essential in guiding student behavior, giving instructions, and maintaining classroom control. Assertives made up 20.4% of the speech acts, primarily used for stating facts and reinforcing content. Expressives, at 14.2%, expressed emotions such as approval or frustration, helping to manage the emotional atmosphere of the classroom. Commissives were the least used, representing 6.2% of the speech acts, often used to set expectations or outline future actions. No declarations were observed during the lesson. The findings of this study reveal the critical role that speech acts play in managing classroom behavior and delivering content in technical subjects. Directives were crucial for ensuring students followed instructions and completed tasks, while assertives helped in reinforcing lesson objectives. Expressives contributed to motivating or disciplining students, and commissives, though less frequent, helped set clear expectations for students’ future actions. The absence of declarations suggests that the teacher prioritized guiding students over making formal pronouncements. These insights can inform teaching strategies across various subject areas, demonstrating that a diverse use of speech acts can create a balanced and interactive learning environment. This study contributes to the growing field of pragmatics in education and offers practical recommendations for educators, particularly in non-language classrooms, on how to utilize speech acts to enhance both classroom management and student engagement.Keywords: classroom interaction, pragmatics, speech acts, teacher communication, career technology
Procedia PDF Downloads 212802 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2252801 Teacher Candidates' Beliefs About Inclusive Teaching Practices
Authors: Charlotte Brenner
Abstract:
Teachers’ beleifs about inclusion are foundational to their implementation of inclusive teaching practices. Utilizing a longitudinal design and multiple case study methodology, this study investigates how teacher candidates’ instructional and practicum experiences shape their beliefs about inclusion in one teacher education program located in western Canada (N=20). Interview questions were developed through the lens of self-determinaiton theory and theory about teachers’ beleifs and inclusion. Preliminary thematic ananysis indicates that a 36-hour course focused on diversity and inclusion supports teacher candiates to deepen their understandings of: the need for inclusion in classrooms and strategies to promote inclusion. Furthermore, teacher candiates identified course components that fostered their developing understandings of inclusion. Future data will examine the stability of teacher candidates’ beliefs about inclusion and their implementation of inclusive teaching strategies throughout their practicum experiences.Keywords: teacher candidates, inclusion, teacher education programs, beliefs
Procedia PDF Downloads 882800 Inclusive Education Policies and Wellbeing in the UK and in France: A Comparative Approach
Authors: Catherine Coron
Abstract:
This paper first tries to scrutinize the diverse meanings and policies of inclusive education in the United Kingdom and France in the recent period thanks to a comparative analysis of the recent literature as well as the various definitions, legislation and good practices of inclusive education. The central question is to find the links between inclusion and economic wellbeing in the economic, social and cultural context of the two countries. The first part questions the economic, social and cultural meaning of the definitions thanks to a comparison between the various perspectives to envisage the notions of inclusion and wellbeing in the two countries in order to better understand the way they are interpreted according to each cultural background. The second part analyses the various policies implemented recently in order to determine the main characteristics, the differences, and the similarities, as well as the economic challenges in terms of wellbeing. The final goal of this paper is to identify the main economic, social and cultural values as regards sustainability in each country.Keywords: education, inclusion, students with special needs, wellbeing
Procedia PDF Downloads 3272799 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 262798 The Importance of the Historical Approach in the Linguistic Research
Authors: Zoran Spasovski
Abstract:
The paper shortly discusses the significance and the benefits of the historical approach in the research of languages by presenting examples of it in the fields of phonetics and phonology, lexicology, morphology, syntax, and even in the onomastics (toponomy and anthroponomy). The examples from the field of phonetics/phonology include insights into animal speech and its evolution into human speech, the evolution of the sounds of human speech from vocals to glides and consonants and from velar consonants to palatal, etc., on well-known examples of former researchers. Those from the field of lexicology show shortly the formation of the lexemes and their evolution; the morphology and syntax are explained by examples of the development of grammar and syntax forms, and the importance of the historical approach in the research of place-names and personal names is briefly outlined through examples of place-names and personal names and surnames, and the conclusions that come from it, in different languages.Keywords: animal speech, glotogenesis, grammar forms, lexicology, place-names, personal names, surnames, syntax categories
Procedia PDF Downloads 852797 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.Keywords: image fusion, iris recognition, local binary pattern, wavelet
Procedia PDF Downloads 3672796 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 5742795 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4532794 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments
Authors: Ana Londral, Burcu Demiray, Marcus Cheetham
Abstract:
Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation
Procedia PDF Downloads 2812793 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 1232792 Frequency of Consonant Production Errors in Children with Speech Sound Disorder: A Retrospective-Descriptive Study
Authors: Amulya P. Rao, Prathima S., Sreedevi N.
Abstract:
Speech sound disorders (SSD) encompass the major concern in younger population of India with highest prevalence rate among the speech disorders. Children with SSD if not identified and rehabilitated at the earliest, are at risk for academic difficulties. This necessitates early identification using screening tools assessing the frequently misarticulated speech sounds. The literature on frequently misarticulated speech sounds is ample in English and other western languages targeting individuals with various communication disorders. Articulation is language specific, and there are limited studies reporting the same in Kannada, a Dravidian Language. Hence, the present study aimed to identify the frequently misarticulated consonants in Kannada and also to examine the error type. A retrospective, descriptive study was carried out using secondary data analysis of 41 participants (34-phonetic type and 7-phonemic type) with SSD in the age range 3-to 12-years. All the consonants of Kannada were analyzed by considering three words for each speech sound from the Kannada Diagnostic Photo Articulation test (KDPAT). Picture naming task was carried out, and responses were audio recorded. The recorded data were transcribed using IPA 2018 broad transcription. A criterion of 2/3 or 3/3 error productions was set to consider the speech sound to be an error. Number of error productions was calculated for each consonant in each participant. Then, the percentage of participants meeting the criteria were documented for each consonant to identify the frequently misarticulated speech sound. Overall results indicated that velar /k/ (48.78%) and /g/ (43.90%) were frequently misarticulated followed by voiced retroflex /ɖ/ (36.58%) and trill /r/ (36.58%). The lateral retroflex /ɭ/ was misarticulated by 31.70% of the children with SSD. Dentals (/t/, /n/), bilabials (/p/, /b/, /m/) and labiodental /v/ were produced correctly by all the participants. The highly misarticulated velars /k/ and /g/ were frequently substituted by dentals /t/ and /d/ respectively or omitted. Participants with SSD-phonemic type had multiple substitutions for one speech sound whereas, SSD-phonetic type had consistent single sound substitutions. Intra- and inter-judge reliability for 10% of the data using Cronbach’s Alpha revealed good reliability (0.8 ≤ α < 0.9). Analyzing a larger sample by replicating such studies will validate the present study results.Keywords: consonant, frequently misarticulated, Kannada, SSD
Procedia PDF Downloads 1342791 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension
Authors: I. Schiller, D. Morsomme, A. Remacle
Abstract:
Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing
Procedia PDF Downloads 1922790 Programmed Speech to Text Summarization Using Graph-Based Algorithm
Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba
Abstract:
Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculationsKeywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization
Procedia PDF Downloads 219