Search results for: aqueous pistachio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1157

Search results for: aqueous pistachio

887 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers

Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush

Abstract:

Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.

Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships

Procedia PDF Downloads 110
886 Electromagnetically-Vibrated Solid-Phase Microextraction for Organic Compounds

Authors: Soo Hyung Park, Seong Beom Kim, Wontae Lee, Jin Chul Joo, Jungmin Lee, Jongsoo Choi

Abstract:

A newly-developed electromagnetically vibrated solid-phase microextraction (SPME) device for extracting nonpolar organic compounds from aqueous matrices was evaluated in terms of sorption equilibrium time, precision, and detection level relative to three other more conventional extraction techniques involving SPME, viz., static, magnetic stirring, and fiber insertion/retraction. Electromagnetic vibration at 300~420 cycles/s was found to be the most efficient extraction technique in terms of reducing sorption equilibrium time and enhancing both precision and linearity. The increased efficiency for electromagnetic vibration was attributed to a greater reduction in the thickness of the stagnant-water layer that facilitated more rapid mass transport from the aqueous matrix to the SPME fiber. Electromagnetic vibration less than 500 cycles/s also did not detrimentally impact the sustainability of the extracting performance of the SPME fiber. Therefore, electromagnetically vibrated SPME may be a more powerful tool for rapid sampling and solvent-free sample preparation relative to other more conventional extraction techniques used with SPME.

Keywords: electromagnetic vibration, organic compounds, precision, solid-phase microextraction (SPME), sorption equilibrium time

Procedia PDF Downloads 254
885 Comparison of the Effects of Fresh Leaf, Septum and Peel Extracts of Walnut on Blood Glucose and Pancreatic Structure

Authors: Tahmineh Hasanzadeh, Afshin Farahbakhsh

Abstract:

There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intraperitoneally.In Iranian traditional medicine, septum of walnut shell (SWS) was recommended to reduce blood glucose. For this purpose, 41 male bulb/C mice 25-30 gm were divided into five groups. All the animals received IP injection of streptozotocin (STZ) (220 mg/kg). Two weeks later, the diabetic animals were received daily oral treatment of normal saline and aqueous extract of SWS (200, 400, 600 and 800 mg/kg) respectively for four weeks. Blood samples were taken from retro orbital sinus before the start of the experiment and repeated each two weeks. At the end of the experiment, the animals were sacrificed and the pancreatic tissues were fixed, prepared and stained by Hematoxylin-Eosin for light microscope studies. The results showed that in each group, the SWS extract reduced blood glucose in a long time (p < 0.05). metabolic extract in STZ- induced diabetic rats, which was accompanied by the hypoglycemic effect of leaf extract. However, this effect should be determined with scientific researches. Therefore, the aim of this study is to evaluate the effect of the aqueous extract of SWS on blood glucose and histopathological structure of pancreas.

Keywords: septum of walnut, blood glucose, pancreas, diabetes, walnut leaf, walnut peel, insulin

Procedia PDF Downloads 279
884 Phytochemial Screening, Anti-Microbial and Mineral Determination of Brysocarpus coccineus Root

Authors: I. L. Ibrahim, A. Mann, A. Ndanaimi

Abstract:

The research involved phytochemical screening, antibacterial activities and mineral determination by flame photometry of the crude extract of Brysocarpus coccineus schum indeed were carried out. The result of Phytochemical screening reveal tha saponins, alkaloids, cardiac glycosides, and anthraquinones were present. This suggests that the plant extract could be used as anti-inflammatory and anti-bleeding agents. Estimation of mineral content shows that the crude extract of B. coccineus contains 0.73 (Na+), 1.06 (K+) and 1.98 (Ca+) which justifies its use to be safe for hypertensive patients and could be used to lower blood pressure. The antibacterial properties of aqueous and ethanol extract were studied against some bacteria; pseudomonas aeruginosa, Escherichia coli, Bacilus subtilis, Klebsilla penmuoniae by disc diffusion method. The aqueous extract showed significant activity against the organisms while the ethanol at concentrations 5-10mg/ml ethanol extract showed significant zone of inhibition against the organisms, E. coli, (19 mm), B. cereus (12 mm), P. aeruginosa (11 mm), K. pnemuoniae (11 mm). Minimum inhibitory concentration (MIC) was carried with considerable effect of inhibition on the organisms. The MIC values observed were 1, 24, 16 and 19 mm against E. coli, B. cereus, P. aeruginosa and K. pnemuoniae respectively. Therefore, the plant could be a potential source of antibacterial agent although more pharmacological and clinical study may be recommended.

Keywords: phytochemicals, microorganisms, screenings, mineral ions

Procedia PDF Downloads 413
883 Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles

Authors: Mehdi Rahimi-Nasrabadi, Seied Mahdi Pourmortazavi

Abstract:

Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence.

Keywords: europium (III) tungstate, nano-material, particle size control, procedure optimization

Procedia PDF Downloads 395
882 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System

Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo

Abstract:

To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.

Keywords: naproxen, nickelate, photocatalysis, oxalic acid

Procedia PDF Downloads 209
881 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins

Procedia PDF Downloads 179
880 Extracts of Ocimum gratissimum Leaves Inhibits Fe2+ and Sodium Nitroprusside Induced Oxidative Stress in Rat Liver

Authors: Oluwafemi Ojo, Omotade Oloyede

Abstract:

This study seeks to investigate the antioxidative properties and the ability of aqueous, ethanolic and ethyl acetate extracts from Ocimum gratissimum (OG) leaves to inhibit some pro-oxidants (Fe2+ and sodium nitroprusside) induced lipid peroxidation in rat’s liver homogenates in vitro. The ability of the extracts to inhibit 25 µM FeSO4 and 7.0 µM sodium nitroprusside induced lipid peroxidation in isolated rat’s liver was determined. The results of the study revealed that both pro-oxidants caused a significantly decrease in (p < 0.05) accumulation of lipid peroxides. However, aqueous extract of OG shows a high ability to inhibit lipid production in the liver induced with SNP than Fe2+. Ethanolic and ethyl acetate extract of OG which shows a high ability to inhibit lipid production more when induced with Fe2+ than SNP. However, ethyl acetate fraction of OG shows a higher inhibitory effect on both Fe2+ and SNP induced lipid peroxidation in rat’s liver. This applies to its significantly higher extractable phytochemicals. Therefore, Fe II and sodium nitroprusside induced oxidative stress could be managed by dietary intake of Ocimum gratissimum leaves.

Keywords: antioxidative, pro-oxidants, lipid peroxidation, Ocimum gratissimum

Procedia PDF Downloads 479
879 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes

Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou

Abstract:

The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.

Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study

Procedia PDF Downloads 153
878 Evaluation of Moroccan Microalgae Spirulina platensis as a Potential Source of Natural Antioxidants

Authors: T. Ould Bellahcen, A. Amiri, I. Touam, F. Hmimid, A. El Amrani, M. Cherki

Abstract:

The antioxidant activity of three extracts (water, lipidic and ethanolic) prepared from the microalgae Spirulina platensis isolated from Moroccan lake, using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis ethylbenzthiazoline-6-sulfonic acid (ABTS) radical assay, was studied and compared. The obtained results revealed that the IC₅₀ found using DPPH were lower than that of ABTS for all extracts from these planktonic blue-green algae. The high levels of phenolic and flavonoid content were found in the ethanolic extract 0,33 ± 0,01 mg GAE/g dw and 0,21 ± 0,01 mg quercetin/g dw respectively. In addition, using DPPH, the highest activity with IC₅₀ = 0,449 ± 0,083 mg/ml, was found for the ethanolic extract, followed by that of lipidic extract (IC₅₀ = 0,491 ± 0,059 mg/ml). The lowest activity was for the aqueous extract (IC₅₀ = 4,148 ± 0,132 mg/ml). For ABTS, the highest activity was observed for the lipidic extract with IC₅₀ = 0,740 ± 0,012 mg/ml, while, the aqueous extract recorded the lowest activity (IC₅₀ = 6,914 ± 0, 0067 mg/ml). A moderate activity was showed for the ethanolic extract (IC₅₀ = 5,852 ± 0, 0171 mg/ml). It can be concluded from this first study that Spirulina platensis extracts show an interesting antioxidant and antiradicals properties suggesting that this alga could be used as a potential source of antioxidants. A qualitative and quantitative analysis of polyphenol and flavonoids in the extracts using HPLC is in progress so as to study the correlation between the antioxidant activity and chemical composition.

Keywords: Spirulina platensis, antioxidant, DPPH, ABTS

Procedia PDF Downloads 165
877 Effect Of Tephrosia purpurea (Family: Fabaceae) Formulations On Oviposition By The Pulse Beetle Callosobruchus chinensis Linn.

Authors: Priyanka Jain, Meera Srivastava

Abstract:

Among important insect pests of stored grains, the pulse beetle Callosobruchus chinensis Linn. (Coleoptera: Bruchidae) is one such pest causing considerable damage to stored pulses. An effort was made to screen plant Tephrosia purpurea (Family: Fabaceae) for its efficacy against the said pest. The pulse beetle C. chinensis was raised on green gram Vigna radiata in incubators maintained at 28 ± 2°C and 70% RH. Different formulations using plant parts (root, stem, leaf and fruit) were employed in the form of aqueous suspension, aqueous extract and ether extract and the treatments were made using different dose concentrations, namely 1%, 2.5%, 5% and 10%, besides normal and control. Specific number of adult insects were released in muslin cloth covered beakers containing weighed green gram grains and treated with different dose concentrations (w/v). Observations for the number of eggs laid by the pest insect C. chinensis was recorded after three days of treatment and it was observed that in general all the treatments of the plant resulted in significant decrease in the eggs laid (no/pair) by the insect, suggesting that the selected plant has a potential to be used against C. chinensis.

Keywords: Callosobruchus chinensis, egg laying, Tephrosia purpurea, Fabaceae, plant formulations

Procedia PDF Downloads 340
876 Potency of Strophanthus hispidus Stem Bark in the Management of Streptozotocin-Induced Diabetic Rats

Authors: M. Osibemhe, I. O. Onoagbe

Abstract:

Diabetes mellitus is a common disease that has no known cure. The available orthodox drugs used for its management have one or more disadvantages. This study investigated the potency of aqueous and ethanol extracts of Strophanthus hispidus (SH) stem bark in the management of diabetes mellitus. Glucose concentration and lipid profile parameters of normal and streptozotocin-induced diabetic rats were monitored for 12weeks. Diabetes mellitus was induced by intraperitoneal injection of streptozotocin (55 mg/kg). Male rats (wistar strain) numbering 30 were randomly selected into six groups of five rats each. Groups 1 and 6 served as normal and diabetic control respectively and received distilled water for 12weeks. Groups 2 and 3 were normal rats treated orally with the aid of a gavage, 250 mg/kg of aqueous and ethanol extracts respectively for 12weeks. Groups 4 and 5 were diabetic rats and were treated with the respective dose of aqueous and ethanol extracts for the same period. A significant (P˂0.05) progressive decrease in blood glucose concentrations of both normal and diabetic rats treated with the extracts were observed from the 2nd to 12th weeks when compared with the respective controls. No significant (P˃0.05) effects were observed in the basal values of both normal and diabetic rats. Administration of both extracts of SH to diabetic rats significantly (P˂0.05) lowered the concentrations of Total cholesterol, TG, and LDL, whereas it increases the concentration of HDL when compared with diabetic control. The concentrations of total cholesterol and LDL in normal rats treated with SH were also reduced when compared with normal control whereas SH had no significant (P˃0.05) effect on HDL. However, TG level of normal control was significantly (P˂0.05) lower than normal rats treated with both extracts. A progressive increase in weight of normal and diabetic rats treated with the extracts was observed on the 2nd – 12th weeks of administration, whereas diabetic control showed a progressive decrease in weight. The findings from this study indicated that SH has hypoglycemic and anti-lipidemic properties as well as anti-diabetic potentials. It also showed that ethanol extract had greater glucose lowering effect. Hence, SH may be considered as a potent anti-diabetic plant and could be used as alternative drug for the management of diabetes mellitus.

Keywords: concentration, ethanol extract, hypoglycemic, total cholesterol

Procedia PDF Downloads 216
875 In vivo Anti-inflammatory, Analgesic, and Antipyretic Activities of Aqueous Extract of Leaves of Brocchia cinerea (Vis.)

Authors: Nisrine Chlif, Mohammed Diouri, Amar Bentayeb

Abstract:

Background: The Leaves of Brocchia cinerea (Vis.) (Asteraceae) is used traditionally and ethnomedicinally to alleviate pain, fever, and inflammation conditions. Objective: The current study investigates the anti-inflammatory, analgesic, and antipyretic activities of aqueous extract of the leaves of Brocchia cinerea (LBC). Material and methods: The extract was screened for anti-inflammatory (carrageenan-induced paw edema) and analgesic (acetic acid-induced writhing) activities in Wistar rats. Before acetic acid or carrageenan injection, rats were orally fed LBC (200 and 400 mg/ kg), Indomethacin (10 mg/kg), or Aspirin (100 mg/kg). The antipyretic effect was studied in brewer’s yeast-induced pyrexia model in rats using Paracetamol (100 mg/kg) as a standard drug. Results: The crude extract tested significantly prevented the increase in paw volume as compared to the control at 200 mg/kg and 400 mg/kg. The LBC treatment significantly inhibited pain at 400 mg/kg with a percent inhibition of 55.82%, as well as showing a significant reduction in hyperpyrexia in rats at 400 mg/kg. LBC extract produced a comparable activity to paracetamol at 100 mg/kg (p <0.01). Conclusion: The results of the present study that the leaves of B. cinerea extract exhibited strongly anti-inflammatory, analgesic, and antipyretic properties and justify the traditional use of this plant in inflammation, pain, and fever.

Keywords: analgesic, anti-inflammation, antipyretic, brocchia cinerea

Procedia PDF Downloads 157
874 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 69
873 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder

Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku

Abstract:

Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.

Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics

Procedia PDF Downloads 245
872 Decolorization and Degradation of Ponceau Red P4R in Aqueous Solution by Ferrate (Vi)

Authors: Chaimaan Benhsinat, Amal Tazi, Mohammed Azzi

Abstract:

Synthetic azo-dyes are widely used in food industry, they product intense coloration, high toxicity and mutagenicity for wastewater; Causing serious damage to aquatic biota and risk factors for humans. The treatment of these effluents remains a major challenge especially for third world countries that have not yet all possibilities to integrate the concept of sustainable development. These aqueous effluents require specific treatment to preserve natural environments. For these reasons and in order to contribute to the fight against this danger, we were interested in this study to the degradation of the dye Ponceau Red E124 'C20H11N2Na3O10S3' 'used in a food industry Casablanca-Morocco, by the super iron ferrate (VI) K3FexMnyO8; Synthesized in our laboratory and known for its high oxidizing and flocculants. The degradation of Ponceau red is evaluated with the objectives of chemical oxygen demand (COD), total organic carbon (TOC) and discoloration reductions. The results are very satisfying. In fact, we achieved 90% reduction of COD and 99% of discoloration. The recovered floc are subject to various techniques for spectroscopic analysis (UV-visible and IR) to identify by-products formed after the degradation. Moreover, the results will then be compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry for the degradation of P4R. The results will be later compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry, in the degradation of the P4R.

Keywords: COD removal, color removal, dye ponceau 4R, oxydation by ferrate (VI)

Procedia PDF Downloads 342
871 Synthesis and Solubilization of Flurbiprofen Derivatives and Investigation of Their Biological Activities

Authors: Muhammad Mustaqeem, Musa Kaleem Baloch, Irfan Ullah, Ammarah Luqman, Afshan Ahmad

Abstract:

Flurbiprofen is one of the most potent nonsteroidal anti-inflammatory drugs. It is widely used for relief of pain in patients suffering from rheumatic diseases, migraine, sore throat and primary dysmenorrhea. However, its aqueous solubility is very low and hinders the skin permeation. Thus, it is imperative to develop such a drug delivery systems which can improve its aqueous solubility and hence improve the skin permeation and therapeutic compliance. Microemulsions have been also proven to increase the cutaneous absorption of lipophilic drugs as compared to conventional vehicles. Micro-emulsion is thermodynamically stable emulsion that has the capacity to ‘hide/solubilize’ water-insoluble molecules within a continuous oil phase. Therefore, flurbiprofen was converted to Easters through chemical reactions with alcohols such as methanol, ethanol, propanol and butanol. The product was further treated with hydrazine to get hydrazide. The solubility of the parent drug Flurbiprofen and the products were solubilized in microemulsions formed using various surfactants like ionic, non-ionic and zwitterions. It has been concluded that the product was more soluble than the parent compound. The biological activities of these were also investigated. The outcome was very promising and the product was more active than the parent compound. It, therefore, concluded that in this way, we can not only enhance the solubility of the drug and increase its bioactivity, but also reduce the risk of stomach cancer.

Keywords: Flurbiprofen, microemulsion, surfactants, hyrazides

Procedia PDF Downloads 227
870 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo

Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham

Abstract:

In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.

Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking

Procedia PDF Downloads 87
869 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption

Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui

Abstract:

The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.

Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa

Procedia PDF Downloads 228
868 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 333
867 Preservative Potentials of Piper Guineense on Roma Tomato (Solanum lycopersicum) Fruit

Authors: Grace O. Babarinde, Adegoke O.Gabriel, Rahman Akinoso, Adekanye Bosede R.

Abstract:

Health risks associated with the use of synthetic chemicals to control post-harvest losses in fruit calls for use of natural biodegradable compounds. The potential of Piper guineense as postharvest preservative for Roma tomato (Solanum lycopersicum L.) was investigated. Freshly harvested red tomato (200 g) was dipped into five concentrations (1, 2, 3, 4 and 5% w/v) of P. guineense aqueous extract, while untreated fruits served as control. The samples were stored under refrigeration and analysed at 5-day interval for physico-chemical properties. P. guineense essential oil (EO) was characterised using GC-MS and its tomato preservative potential was evaluated. Percentage weight loss (PWL) in extract-treated tomato ranged from 0.0-0.68% compared to control (0.3-19.97%) during storage. Values obtained for firmness ranged from 8.23-16.88 N and 8.4 N in extract-treated and control. pH reduced from 5.4 to 4.5 and 3.7 in extract-treated and untreated samples, respectively. Highest value of Total Soluble Solid (1.8 °Brix) and maximum retention of Ascorbic acid (13.0 mg/100 g) were observed in 4% P. guineense-treated samples. Predominant P. guineense EO components were zingiberene (9.9%), linalool (10.7%), β-caryophyllene (12.6%), 1, 5-Heptadiene, 6-methyl-2-(4-methyl-3-cyclohexene-l-yl) (16.4%) and β-sesquiphellandrene (23.7%). Tomatoes treated with EO had lower PWL (5.2%) and higher firmness (14.2 N) than controls (15.3% and 11.9 N) respectively. The result indicates that P. guineense can be incorporated in to post harvest technology of Roma tomato fruit.

Keywords: aqueous extract, essential oil, piper guineense, Roma tomato, storage condition

Procedia PDF Downloads 476
866 Potential of Lactic Acid Bacteria for Cadmium Removal from Aqueous Solution

Authors: Ana M. Guzman, Claudia M. Rodriguez, Pedro F. B. Brandao, Elianna Castillo

Abstract:

Cadmium (Cd) is a carcinogenic metal to which humans are exposed mainly due to its presence in the food chain. Lactic acid bacteria have the capability to bind cadmium and thus the potential to be used as probiotics to treat this metal toxicity in the human body. The main objective of this study is to evaluate the potential of native lactic acid bacteria, isolated from Colombian fermented cocoa, to remove cadmium from aqueous solutions. An initial screening was made with the Lactobacillus plantarum JCM 1055 type strain, and Cd was quantified by atomic absorption spectroscopy (AAS). Lb. plantarum JCM 1055 was grown in ½ MRS medium to follow growth kinetics during 32 h at 37 °C, by measuring optical density at 600 nm. Washed cells, grown for 18 h, were adjusted to obtain dry biomass concentrations of 1.5 g/L and 0.5 g/L for removal assays in 10 mL of Cd(NO₃)₂ solution with final concentrations of 10 mg/Kg or 1.0 mg/Kg. The assays were performed at two different pH values (2.0 and 5.0), and results showed better adsorption abilities at higher pH. After incubation for 1 h at 37 °C and 150 rpm, the removal percentages for 10 mg/Kg Cd with 1.5 g/L and 0.5 g/L biomass concentration at pH 5.0 were, respectively, 71% and 50%, while the efficiency was 9.15 and 4.52 mg Cd/g dry biomass, respectively. For the assay with 1.0 mg/Kg Cd at pH 5.0, the removal was 100% and 98%, respectively for the same biomass concentrations, and the efficiency was 1.63 and 0.56 mg Cd/g dry biomass, respectively. These results suggest the efficiency of Lactobacillus strains to remove cadmium and their potential to be used as probiotics to treat cadmium toxicity and reduce its accumulation in the human body.

Keywords: cadmium removal, fermented cocoa, lactic acid bacteria, probiotics

Procedia PDF Downloads 171
865 Effect of Arbutus Pavarii ( Shemari ) Libyan Medical Plant on Ethylene Glycol Induced Urolithiasis in Male Albino Rats

Authors: Khaled. M.Benelhaj, Moada Elbadary

Abstract:

The present investigation is carried out to evaluate the effect of aqueous extract of Arbutus Pavarii (Shemari) Libyan medical plant on ethylene glycol(EG) induce lithiasis in adult male albino rats. The lithiasis was induced to rats by oral administration of EG (0.75 w/v%) for 21 days(group 1). Aqueous extract of Shemari (200 mg/kg) was given orally from 1st day for preventive regimen (group 2) and from day 21st up to 42nd day for curative regimen (group 3). The results indicated that the EG elevated the urinary ionic of calcium, oxalates and inorganic phosphate. The Shemari significantly (P<0.01) reduced the levels of these ions. The histopathological findings showed that EG caused marked pathological changes in renal cortex; necrosis of glomerular tufts; mildy thickened bowman’s capsule and coagulative necrosis of large number of convoluted tubules. However, the histological changes in preventive regimen group 2 showed the same changes observed in group 1, but milder in severity and less in frequency. It conclude that Shemari do reduce the urinary ionic levels of calcium, oxalates and inorganic phosphate but failed to prevent complete deterioration effects of EG on kidney structures.

Keywords: EG, shamari, kidney stone, Libyan medical plant, glycol, oxalates

Procedia PDF Downloads 549
864 The Structure and Composition of Plant Communities in Ajluon Forest Reserve in Jordan

Authors: Maher J. Tadros, Yaseen Ananbeh

Abstract:

The study area is located in Ajluon Forest Reserve northern part of Jordan. It consists of Mediterranean hills dominated by open woodlands of oak and pistachio. The aims of the study were to investigate the positive and negative relationships between the locals and the protected area and how it can affect the long-term forest conservation. The main research objectives are to review the impact of establishing Ajloun Forest Reserve on nature conservation and on the livelihood level of local communities around the reserve. The Ajloun forest reserve plays a fundamental role in Ajloun area development. The existence of initiatives of nature conservation in the area supports various socio-economic activities around the reserve that contribute towards the development of local communities in Ajloun area. A part of this research was to conduct a survey to study the impact of Ajloun forest reserve on biodiversity composition. Also, studying the biodiversity content especially for vegetation to determine the economic impacts of Ajloun forest reserve on its surroundings was studied. In this study, several methods were used to fill the objectives including point-centered quarter method which involves selecting randomly 50 plots at the study site. The collected data from the field showed that the absolute density was (1031.24 plant per hectare). Density was recorded and found to be the highest for Quecus coccifera, and relative density of (73.7%), this was followed by Arbutus andrachne and relative density (7.1%), Pistacia palaestina and relative density (10.5%) and Crataegus azarulus (82.5 p/ha) and relative density (5.1%),

Keywords: composition, density, frequency, importance value, point-centered quarter, structure, tree cover

Procedia PDF Downloads 278
863 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium

Authors: Shyam Ranjan Kumar, Shashikant Rajpal

Abstract:

Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.

Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe

Procedia PDF Downloads 193
862 The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium

Authors: Wed Albalawi, Ebtihaj Jambi, Maha Albazi, Shareefa AlGhamdi

Abstract:

Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals.

Keywords: biosorption, heavy metal, pollution, pH value, brown algae

Procedia PDF Downloads 76
861 Antioxidant Activity, Total Phenol and Pigments Content of Seaweeds Collected from, Rameshwaram, Gulf of Mannar, Southeast Coast of India

Authors: Suparna Roy, P. Anantharaman

Abstract:

The aim of this work is to estimate some in-vitro antioxidant activities and total phenols of various extracts such as aqueous, acetone, ethanol, methanol extract of seaweeds and pigments content by Spectrophotometric method. The seaweeds were collected during 2016 from Rameshwaram, southeast coast of India. Among four different extracts, aqueous extracts from all seaweeds had minimum activity than acetone, methanol and ethanol. The Rhodophyta and Phaeophyta had high antioxidant activity in comparing to Chlorophyta. The highest total antioxidant activity was found in acetone extract fromTurbinaria decurrens (98.97±0.00%), followed by its methanol extract (98.81±0.60%) and ethanol extract (98.58±0.53%). The highest reducing power and H2O2 scavenging activity were found in acetone extract of Caulerpa racemosa (383.25±1.04%), and methanol extract from Caulerpa racemosa var. macrophysa (24.91±0.49%). The methanol extract from Caulerpa scalpelliformis contained the highest total phenol (85.23±0.12%). The Chloro-a and Chloro-b contents were the highest in Gracilaria foliifera (13.69±0.38% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (9.12 ±0.12% mg/gm dry wt.) likewise carotenoid was also the highest in Gracilaria foliifera (0.054±0.0003% mg/gm dry wt.) and Caulerpa racemosa var. macrophysa (0.04 ±0.002% mg/gm dry wt.). It can be concluded from this study that some seaweed extract can be used for natural antioxidant production, after further characterization to negotiate the side effect of synthetic, market available antioxidants.

Keywords: seaweeds, antioxidant, total phenol, pigment, Olaikuda, Vadakkadu, Rameshwaram

Procedia PDF Downloads 266
860 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 222
859 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation

Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar

Abstract:

In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.

Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment

Procedia PDF Downloads 431
858 Nephroprotective Effect of Aqueous Extract of Plectranthus amboinicus (Roxb.) Leaves in Adriamycin Induced Acute Renal Failure in Wistar Rats: A Biochemical and Histopathological Assessment

Authors: Ampe Mohottige Sachinthi Sandaruwani Amarasiri, Anoja Priyadarshani Attanayake, Kamani Ayoma Perera Wijewardana Jayatilaka, Lakmini Kumari Boralugoda Mudduwa

Abstract:

The search for alternative pharmacological therapies based on natural extracts for renal failure has become an urgent need, due to paucity of effective pharmacotherapy. The current study was undertaken to evaluate the acute nephroprotective effect of aqueous leaf extract of Plectranthus amboinicus (Roxb.) (Family: Lamiaceae), a medicinal plant used in traditional Ayurvedic medicine for the management of renal diseases in Sri Lanka. The study was performed in adriamycin (ADR) induced nephrotoxic in Wistar rats. Wistar rats were randomly divided into four groups each with six rats. A single dose of ADR (20 mg/kg body wt., ip) was used for the induction of nephrotoxicity in all groups of rats except group one. The treatments were started 24 hours after induction of nephrotoxicity and continued for three days. Group one and two served as healthy and nephrotoxic control rats and were administered equivalent volumes of normal saline (0.9% NaCl) orally. Group three and four nephrotoxic rats were administered the lyophilized powder of the aqueous extract of P. amboinicus (400 mg/ kg body wt.; equivalent human therapeutic dose) and the standard drug, fosinopril sodium (0.09 mg/ kg body wt.) respectively. Urine and blood samples were collected from rats in each group at the end of the period of intervention for the estimation of selected renal parameters. H and E stained sections of the kidney tissues were examined for histopathological changes. Rats treated with the plant extract showed significant improvement in biochemical parameters and histopathological changes compared to ADR induced nephrotoxic group. The elevation of serum concentrations of creatinine and β2-microglobulin were decreased by 38%, and 66% in plant extract treated nephrotoxic rats respectively (p < 0.05). In addition, serum concentrations of total protein and albumin were significantly increased by 25% and 14% in rats treated with P. amboinicus respectively (p < 0.05). The results of β2 –microglobulin and serum total protein demonstrated a significant reduction in the elevated values in rats administered with the plant extract (400 mg/kg) compared to that of fosinopril (0.09 mg/kg). Urinary protein loss in 24hr urine samples was significantly decreased in rats treated with both fosinopril (86%) and P. ambonicus (56%) at the end of the intervention (p < 0.01). Accordingly, an attenuation of morphological destruction was observed in the H and E stained sections of the kidney with the treatments of plant extract and fosinopril. The results of the present study revealed that the aqueous leaf extract of P. amboinicus possesses significant nephroprotective activity at the equivalent therapeutic dose of 400 mg/ kg against adriamycin induced acute nephrotoxicity.

Keywords: biochemical assessment, histopathological assessment, nephroprotective activity, Plectranthus amboinicus

Procedia PDF Downloads 146