Search results for: soil compaction method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21380

Search results for: soil compaction method

21380 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Sadiku Salawu

Abstract:

A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test.

Keywords: A-3 soil, clay minerals, pozzolanic action, stabilization

Procedia PDF Downloads 445
21379 Dynamic Compaction Assessment for Improving Pasdaran Highway

Authors: Alireza Motamadnia, Roohollah Zohdi Oliayi, Hümeyra Bolakar, Ahmet Tortum

Abstract:

Dynamic compression as a method of soil improvement in recent decades has been considered by engineers and experts. Three methods mainly, deep dynamic compaction, soil density, dynamic and rapid change have been proposed and implemented to improve subgrade conditions of highway road. Northern highway route in Tabriz (Pasdaran), Iran that was placed on the manual soil was the main concern. Engineering properties of soil have been investigated experimentally and theoretically. Among the three methods rapid dynamic compaction for highway has been suggested to improve the soil subgrade conditions.

Keywords: manual soil, subsidence, improvement, dynamic compression

Procedia PDF Downloads 603
21378 Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

Authors: Ali Ghodsbin Jahromi, Ehsan Moradi

Abstract:

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.

Keywords: pipe ovality, soil compaction, finite element, pipe thickness

Procedia PDF Downloads 152
21377 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 94
21376 Effect of Various Tillage Systems on Soil Compaction

Authors: Sushil Kumar, Mukesh Jain, Vijaya Rani, Vinod Kumar

Abstract:

The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach.

Keywords: tillage, no tillage, rotavator, subsoiler, compaction

Procedia PDF Downloads 319
21375 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 408
21374 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: draft force, soil compaction model, stress state, tractive tire

Procedia PDF Downloads 352
21373 Effect of Compaction Energy on the Compaction of Soils with Low Water Content in the Semi-arid Region of Chlef

Authors: Obeida Aiche, Mohamed Khiatine, Medjnoun Amal, Ramdane Bahar

Abstract:

Soil compaction is one of the most challenging tasks in the construction of road embankments, railway platforms, and earth dams. Stability and durability are mainly related to the nature of the materials used and the type of soil in place. However, nature does not always offer the engineer materials with the right water content, especially in arid and semi-arid regions where obtaining the optimum Proctor water content requires the addition of considerable quantities of water. The current environmental context does not allow for the rational use of water, especially in arid and semi-arid regions, where it is preferable to preserve water resources for the benefit of the local population. Low water compaction can be an interesting approach as it promotes the reuse of earthworks materials in their dry or very dry state. Thanks to techniques in the field of soil compaction, such as vibratory compactors, which have made it possible to increase the compaction energy considerably, it is possible for some materials to obtain a satisfactory quality by compacting at low water contents or at least lower than the optimum determined by the Proctor test. This communication deals with the low water content compaction of soils in the semi-arid zone of the Chlef region in Algeria by increasing the compaction energy.

Keywords: compaction, soil, low water content, compaction energy

Procedia PDF Downloads 112
21372 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 92
21371 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 408
21370 Soil Compaction by a Forwarder in Timber Harvesting

Authors: Juang R. Matangaran, Erianto I. Putra, Iis Diatin, Muhammad Mujahid, Qi Adlan

Abstract:

Industrial plantation forest is the producer of logs in Indonesia. Several companies of industrial plantation forest have been successfully planted with fast-growing species, and it entered their annual harvesting period. Heavy machines such as forwarders are used in timber harvesting to extract logs from stump to landing site. The negative impact of using such machines are loss of topsoil and soil compaction. Compacted soil is considered unfavorable for plant growth. The research objectives were to analyze the soil bulk density, rut, and cone index of the soil caused by a forwarder passes, to analyze the relation between several times of forwarder passes to the increase of soil bulk density. A Valmet forwarder was used in this research. Soil bulk density at soil surface and cone index from the soil surface to the 50 cm depth of soil were measured at the harvested area. The result showed that soil bulk density increase with the increase of the Valmet forwarder passes. Maximum soil bulk density occurred after 5 times forwarder Valmet passed. The cone index tended to increase from the surface until 50 cm depth of soil. Rut formed and high soil bulk density indicated the soil compaction occurred by the forwarder operation.

Keywords: bulk density, forwarder Valmet, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 146
21369 Bioremediation Influence on Shear Strength of Contaminated Soils

Authors: Tawar Mahmoodzadeh

Abstract:

Today soil contamination is an unavoidable issue; Irrespective of environmental impact, which happens during the soil contaminating and remediating process, the influence of this phenomenon on soil has not been searched thoroughly. In this study, unconfined compression and compaction tests were done on samples, contaminated and treated soil after 50 days of bio-treatment. The results show that rising in the amount of oil, cause decreased optimum water content and maximum dry density and increased strength. However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent.

Keywords: oil contamination soil, shear strength, compaction, bioremediation

Procedia PDF Downloads 155
21368 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic

Abstract:

Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 225
21367 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: consolidation, proctor compaction, swell index, treated waste-water, volume change

Procedia PDF Downloads 263
21366 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 138
21365 Modeling of Compaction Curves for CCA-Cement Stabilized Lateritic Soils

Authors: O. Ahmed Apampa, Yinusa, A. Jimoh

Abstract:

The aim of this study was to develop an appropriate model for predicting the compaction behavior of lateritic soils and corn cob ash (CCA) stabilized lateritic soils. This was done by first adopting an equation earlier developed for fine-grained soils and subsequent adaptation by others and extending it to modified lateritic soil through the introduction of alpha and beta parameters which are polynomial functions of the CCA binder input. The polynomial equations were determined with MATLAB R2011 curve fitting tool, while the alpha and beta parameters were determined by standard linear programming techniques using the Solver function of Microsoft Excel 2010. The model so developed was a good fit with a correlation coefficient R2 value of 0.86. The paper concludes that it is possible to determine the optimum moisture content and the maximum dry density of CCA stabilized soils from the compaction test of the unmodified soil, and recommends that this procedure is extended to other binder stabilized lateritic soils to facilitate quick decision making in roadworks.

Keywords: compaction, corn cob ash, lateritic soil, stabilization

Procedia PDF Downloads 533
21364 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 354
21363 Failure of Agriculture Soil following the Passage of Tractors

Authors: Anis Eloud, Sayed Chehaibi

Abstract:

Compaction of agricultural soils as a result of the passage of heavy machinery on the fields is a problem that affects many agronomists and farmers since it results in a loss of yield of most crops. To remedy this, and raise the overall future of the food security challenge, we must study and understand the process of soil degradation. The present review is devoted to understanding the effect of repeated passages on agricultural land. The experiments were performed on a plot of the area of the ESIER, characterized by a clay texture in order to quantify the soil compaction caused by the wheels of the tractor during repeated passages on agricultural land. The test tractor CASE type puissance 110 hp and 5470 kg total mass of 3500 kg including the two rear axles and 1970 kg on the front axle. The state of soil compaction has been characterized by measuring its resistance to penetration by means of a penetrometer and direct manual reading, the density and permeability of the soil. Soil moisture was taken jointly. The measurements are made in the initial state before passing the tractor and after each pass varies from 1 to 7 on the track wheel inflated to 1.5 bar for the rear wheel and broke water to the level of valve and 4 bar for the front wheels. The passages are spaced to the average of one week. The results show that the passage of wheels on a farm tilled soil leads to compaction and the latter increases with the number of passages, especially for the upper 15 cm depth horizons. The first passage is characterized by the greatest effect. However, the effect of other passages do not follow a definite law for the complex behavior of granular media and the history of labor and the constraints it suffers from its formation.

Keywords: wheel traffic, tractor, soil compaction, wheel

Procedia PDF Downloads 484
21362 Bearing Capacity of Sulphuric Acid Content Soil

Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar

Abstract:

Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.

Keywords: soil compaction, H2SO4, soil water, water conditions

Procedia PDF Downloads 540
21361 Effect of Highway Construction on Soil Properties and Soil Organic Carbon (Soc) Along Lagos-Badagry Expressway, Lagos, Nigeria

Authors: Fatai Olakunle Ogundele

Abstract:

Road construction is increasingly common in today's world as human development expands and people increasingly rely on cars for transportation on a daily basis. The construction of a large network of roads has dramatically altered the landscape and impacted well-being in a number of deleterious ways. In addition, the road can also shift population demographics and be a source of pollution into the environment. Road construction activities normally result in changes in alteration of the soil's physical properties through soil compaction on the road itself and on adjacent areas and chemical and biological properties, among other effects. Understanding roadside soil properties that are influenced by road construction activities can serve as a basis for formulating conservation-based management strategies. Therefore, this study examined the effects of road construction on soil properties and soil organic carbon along Lagos Badagry Expressway, Lagos, Nigeria. The study adopted purposive sampling techniques and 40 soil samples were collected at a depth of 0 – 30cm from each of the identified road intersections and infrastructures using a soil auger. The soil samples collected were taken to the laboratory for soil properties and carbon stock analysis using standard methods. Both descriptive and inferential statistical techniques were applied to analyze the data obtained. The results revealed that soil compaction inhibits ecological succession on roadsides in that increased compaction suppresses plant growth as well as causes changes in soil quality.

Keywords: highway, soil properties, organic carbon, road construction, land degradation

Procedia PDF Downloads 81
21360 Mechanical Soil: Effects of the Passage of Tractors on Agricultural Land

Authors: Anis Eloud, Ben Salah Nahla, Sayed Chehaibi

Abstract:

In order to improve and develop the Tunisian agriculture, the government has encouraged the introduction of modern technologies and has also promoted the adoption of innovative practices cultures. Indeed, the extensive use of mechanization can increase crop productivity but its inadequate application also has a negative impact on the ground caused by the phenomenon of compaction. Which will cause the loss of soil fertility and increased production costs. This problem is accentuated with increase the stress on contact wheel / ground. For this reason, the objective of this study is to simulate the footprint of the ground contact / tire two types of tractor after their passage. The method of this work is based on a simulation including passages from two different tractors on soil with similar characteristics. Simulation parameters were based on the choice of two tractors masses of 6500 kg and 4400 kg of soil and sandy loam in nature. The analysis was performed using specific software. The main results showed that the heaviest tractor caused a constraint wheel / rear floor exceeding 100 kPa. For cons, the second tractor has caused stress wheel / rear floor of 50 kPa. The comparison of the two results showed that 6500 kg tractor made a serious and excessive compaction which generated a negative impact on soil quality and crop yields.

Keywords: compaction, soil, resistance to penetration, crop yields

Procedia PDF Downloads 436
21359 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers

Authors: Samah Said, Muhsin Elie Rahhal

Abstract:

Due to the COVID-19 pandemic, disposable plastic-based face masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Add to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similarly to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.

Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance

Procedia PDF Downloads 97
21358 Experimental Study on Use of Crumb Rubber to Mitigate Expansive Soil Pressures on Basement Walls

Authors: Kwestan Salimi, Jenna Jacoby, Michelle Basham, Amy Cerato

Abstract:

The extreme annual weather patterns of the central United States have increased the need for underground shelters for protection from destructive tornadic activity. However, very few residential homes have basements due to the added construction expense and the prevalence of expansive soils covering the central portion of the United States. These expansive soils shrink and swell, increasing earth pressure on basement walls. To mitigate the effect of expansive soils on basement walls, this study performed bench-scale tests using a common natural expansive soil mitigated with a backfill layer of crumb rubber. The results revealed that at 80% soil compaction, a 1:6 backfill height to total height ratio produced a 66% reduction in swell pressure. However, this percent reduction decreased to 27% for 90% soil compaction. It was also found that there is a strong linear correlation between compaction percentage and reduction in swell pressure when using the same backfill height to total height ratio. Using this correlation and extrapolating to 95% compaction, the percent reduction in swell pressure was approximately 12%.

Keywords: expansive soils, swell/shrink, swell pressure, stabilization, crumb rubber

Procedia PDF Downloads 161
21357 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: silty soil, waste plastic, compaction, consolidation, reinforcement

Procedia PDF Downloads 175
21356 Laboratory Studies to Assess the Effect of Recron Fiber on Soil Subgrade Characteristics

Authors: Lokesh Gupta, Rakesh Kumar

Abstract:

Stabilization of weak subgrade soil is mainly aimed for the improvement of soil strength and its durability. Highway engineers are concerned to get the soil material or system that will hold under the design use conditions and for the designed life of the engineering project. The present study envisages the effect of Recron fibres mixed in different proportion (up to 1% by weight of dry soil) on Atterberg limits, Compaction of the soil, California bearing ratio (CBR) values and unconfined compressive strength (UCS) of the soil. The present study deals with the influence of varying in length (20 mm, 30mm, 40mm and 50mm) and percentage (0.25 %, 0.50 %, 0.75 % and 1.0 %) of fibre added to the soil samples. The aim of study is to determine the reinforcing effect of randomly distributed fibres on the Compaction characteristics, penetration resistance and unconfined compressive strength of soils. The addition of fibres leads to an increase in the optimum moisture content and decrease in maximum dry density. With the addition of the fibres, the increases in CBR and UCS values are observed. The test result shows higher CBR and unconfined compressive strength value for the soil reinforced with 0.5% Recron fibre, once keeping aspect ratio as 160.

Keywords: soil, recron fiber, unconfined compressive strength (UCS), California bearing ratio (CBR)

Procedia PDF Downloads 164
21355 Numerical Analysis for Soil Compaction and Plastic Points Extension in Pile Drivability

Authors: Omid Tavasoli, Mahmoud Ghazavi

Abstract:

A numerical analysis of drivability of piles in different geometry is presented. In this paper, a three-dimensional finite difference analysis for plastic point extension and soil compaction in the effect of pile driving is analyzed. Four pile configurations such as cylindrical pile, fully tapered pile, T-C pile consists of a top tapered segment and a lower cylindrical segment and C-T pile has a top cylindrical part followed by a tapered part are investigated. All piles which driven up to a total penetration depth of 16 m have the same length with equivalent surface area and approximately with identical material volumes. An idealization for pile-soil system in pile driving is considered for this approach. A linear elastic material is assumed to model the vertical pile behaviors and the soil obeys the elasto-plastic constitutive low and its failure is controlled by the Mohr-Coulomb failure criterion. A slip which occurred at the pile-soil contact surfaces along the shaft and the toe in pile driving procedures is simulated with interface elements. All initial and boundary conditions are the same in all analyses. Quiet boundaries are used to prevent wave reflection in the lateral and vertical directions for the soil. The results obtained from numerical analyses were compared with available other numerical data and laboratory tests, indicating a satisfactory agreement. It will be shown that with increasing the angle of taper, the permanent piles toe settlement increase and therefore, the extension of plastic points increase. These are interesting phenomena in pile driving and are on the safe side for driven piles.

Keywords: pile driving, finite difference method, non-uniform piles, pile geometry, pile set, plastic points, soil compaction

Procedia PDF Downloads 484
21354 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia

Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana

Abstract:

A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.

Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition

Procedia PDF Downloads 122
21353 Study of Physico-Chimical Properties of a Silty Soil

Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef

Abstract:

Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.

Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties

Procedia PDF Downloads 472
21352 Geo-Engineering Properties of Lime Stabilized Expansive Soil with Shredded Waste Tyre

Authors: Upasana Pattnaik, Akshaya Kumar Sabat

Abstract:

The compaction properties, unconfined compressive strength (UCS), soaked California bearing ratio (CBR), hydraulic conductivity, and swelling pressure of lime stabilized expansive soil-shredded waste tyre mixes have been discussed in this paper. Shredded waste tyres, passing 4.75 mm Indian Standard (IS) sieve and retained on 75µ IS sieve have been used in the experimental programme. First of all expansive soil-shredded waste tyre mixes were prepared by adding shredded waste tyre from 0 to 20% at an increment of 5%.Standard Proctor compaction, UCS and soaked CBR tests were conducted on these mixes. The optimum percentage of shredded waste tyre found out was 10%.In the second phase of the experiment, lime was added to sample having optimum percentage of expansive soil and shredded waste tyre from 2 to 6% at an increment of 1%.Compaction, UCS, soaked CBR, hydraulic conductivity, and swelling pressure tests were conducted on lime stabilized expansive soil-shredded waste tyre mixes. The optimum percentage of lime for stabilization was found out to be 5%.At the optimum percentage of lime the stabilized expansive soil-shredded waste tyre mix had increased strength, reduced hydraulic conductivity and swelling pressure.

Keywords: expansive soil, hydraulic conductivity, lime, shredded waste tyre, soaked california bearing ratio

Procedia PDF Downloads 269
21351 Bioremediation Effect on Shear Strength of Contaminated Soils

Authors: Samira Abbaspour

Abstract:

Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase.

Keywords: contamination, shear strength, compaction, oil contamination

Procedia PDF Downloads 185