Search results for: peak/valley segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2128

Search results for: peak/valley segmentation

2128 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 123
2127 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
2126 Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness

Authors: Fang Liu, Jia Jia Yao, Guan Lin Wu, Ren Jie Liu, Zhuang Guo

Abstract:

Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits.

Keywords: GaN resonant tunneling diode, peak current density, peak-to-valley current ratio, negative differential resistance

Procedia PDF Downloads 63
2125 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning

Procedia PDF Downloads 119
2124 Resonant Tunnelling Diode Output Characteristics Dependence on Structural Parameters: Simulations Based on Non-Equilibrium Green Functions

Authors: Saif Alomari

Abstract:

The paper aims at giving physical and mathematical descriptions of how the structural parameters of a resonant tunnelling diode (RTD) affect its output characteristics. Specifically, the value of the peak voltage, peak current, peak to valley current ratio (PVCR), and the difference between peak and valley voltages and currents ΔV and ΔI. A simulation-based approach using the Non-Equilibrium Green Function (NEGF) formalism based on the Silvaco ATLAS simulator is employed to conduct a series of designed experiments. These experiments show how the doping concentration in the emitter and collector layers, their thicknesses, and the width of the barriers and the quantum well influence the above-mentioned output characteristics. Each of these parameters was systematically changed while holding others fixed in each set of experiments. Factorial experiments are outside the scope of this work and will be investigated in future. The physics involved in the operation of the device is thoroughly explained and mathematical models based on curve fitting and underlaying physical principles are deduced. The models can be used to design devices with predictable output characteristics. These models were found absent in the literature that the author acanned. Results show that the doping concentration in each region has an effect on the value of the peak voltage. It is found that increasing the carrier concentration in the collector region shifts the peak to lower values, whereas increasing it in the emitter shifts the peak to higher values. In the collector’s case, the shift is either controlled by the built-in potential resulting from the concentration gradient or the conductivity enhancement in the collector. The shift to higher voltages is found to be also related to the location of the Fermi-level. The thicknesses of these layers play a role in the location of the peak as well. It was found that increasing the thickness of each region shifts the peak to higher values until a specific characteristic length, afterwards the peak becomes independent of the thickness. Finally, it is shown that the thickness of the barriers can be optimized for a particular well width to produce the highest PVCR or the highest ΔV and ΔI. The location of the peak voltage is important in optoelectronic applications of RTDs where the operating point of the device is usually the peak voltage point. Furthermore, the PVCR, ΔV, and ΔI are of great importance for building RTD-based oscillators as they affect the frequency response and output power of the oscillator.

Keywords: peak to valley ratio, peak voltage shift, resonant tunneling diodes, structural parameters

Procedia PDF Downloads 142
2123 Optimization of the Rain Harvest Using Multi-Purpose Valley Tanks

Authors: Ahmad Hashad

Abstract:

Valley tanks are a kind of rain harvest which is used as ground water storage to overcome drought seasons in some countries. This research displays the rain harvest evolution and introduces some ideas to develop the valley tanks to be more than water storage. These ideas developed the current valley tanks design to become an integrated renaissance project. The suggested design has some changes making it different than the traditional design of valley tanks. These changes allow for the new design to be more flexible for adding additional capacity, water purification units and water pumping units. The suggested valley tanks project will be designed based on studying the rainfall and evaporation rates, as well as land topography and designed agricultural map linked to seasons of rain and drought.

Keywords: valley tanks, rain harvest, volatile nature, integrated renaissance project

Procedia PDF Downloads 250
2122 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 163
2121 Performance of Armchair Graphene Nanoribbon Resonant Tunneling Diode under Uniaxial Strain

Authors: Milad Zoghi, M. Zahangir Kabir

Abstract:

Performance of armchair graphene nanoribbon (AGNR) resonant tunneling diodes (RTD) alter if they go under strain. This may happen due to either using stretchable substrates or real working conditions such as heat generation. Therefore, it is informative to understand how mechanical deformations such as uniaxial strain can impact the performance of AGNR RTDs. In this paper, two platforms of AGNR RTD consist of width-modified AGNR RTD and electric-field modified AGNR RTD are subjected to both compressive and tensile uniaxial strain ranging from -2% to +2%. It is found that characteristics of AGNR RTD markedly change under both compressive and tensile strain. In particular, peak to valley ratio (PVR) can be totally disappeared upon strong enough strain deformation. Numerical tight binding (TB) coupled with Non-Equilibrium Green's Function (NEGF) is derived for this study to calculate corresponding Hamiltonian matrices and transport properties.

Keywords: armchair graphene nanoribbon, resonant tunneling diode, uniaxial strain, peak to valley ratio

Procedia PDF Downloads 179
2120 A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Authors: Mayssa Bensalah, Atef Boujelben, Mouna Baklouti, Mohamed Abid

Abstract:

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Keywords: features extraction, image segmentation, medical images, tumor detection

Procedia PDF Downloads 168
2119 A Spin and Valley Modulating Device in Grapheme heterostructure: Controlling Valley and Spin Current

Authors: Adel Belayadi

Abstract:

The investigation of two-dimensional (2D) heterostructures, whether in the presence or the absence of magnetic substrates that sustain several induced spin-orbit couplings, has shown a promising/essential application for advancing the emerging fields of spintronics and valleytronics. In this contribution, we study spin/valley transport in graphene-like substrates in the presence of one or several locally induced spin-orbit coupling (SOC) terms resulting from graphene-based heterostructures. The models we proposed are based on the tight-binding approach, and our findings imply an alternative approach for conducting valley-polarized currents and suggest a corresponding mechanism for valley-dependent electron optics and optoelectronic devices.

Keywords: graphene-heterostructures, tight binding pproch, Spintronics, Valleytronics

Procedia PDF Downloads 28
2118 Toward Automatic Chest CT Image Segmentation

Authors: Angely Sim Jia Wun, Sasa Arsovski

Abstract:

Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.

Keywords: lung segmentation, binary masks, U-Net, medical software tools

Procedia PDF Downloads 98
2117 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service

Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong

Abstract:

Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.

Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation

Procedia PDF Downloads 334
2116 A Comparison between Different Segmentation Techniques Used in Medical Imaging

Authors: Ibtihal D. Mustafa, Mawia A. Hassan

Abstract:

Tumor segmentation from MRI image is important part of medical images experts. This is particularly a challenging task because of the high assorting appearance of tumor tissue among different patients. MRI images are advance of medical imaging because it is give richer information about human soft tissue. There are different segmentation techniques to detect MRI brain tumor. In this paper, different procedure segmentation methods are used to segment brain tumors and compare the result of segmentations by using correlation and structural similarity index (SSIM) to analysis and see the best technique that could be applied to MRI image.

Keywords: MRI, segmentation, correlation, structural similarity

Procedia PDF Downloads 410
2115 Multidimensional Sports Spectators Segmentation and Social Media Marketing

Authors: B. Schmid, C. Kexel, E. Djafarova

Abstract:

Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.

Keywords: multidimensional segmentation, social media, sports marketing, sports spectators segmentation

Procedia PDF Downloads 307
2114 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 74
2113 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification

Procedia PDF Downloads 380
2112 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 334
2111 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 124
2110 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 184
2109 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun

Abstract:

III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio

Procedia PDF Downloads 82
2108 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 145
2107 Digital Retinal Images: Background and Damaged Areas Segmentation

Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager

Abstract:

Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.

Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation

Procedia PDF Downloads 404
2106 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning

Procedia PDF Downloads 267
2105 Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method

Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy

Abstract:

Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.

Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images

Procedia PDF Downloads 311
2104 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 140
2103 Review of the Software Used for 3D Volumetric Reconstruction of the Liver

Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta

Abstract:

In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.

Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction

Procedia PDF Downloads 291
2102 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction

Authors: M. Jebali, M. Jemni

Abstract:

This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.

Keywords: HCI, sign language recognition, object tracking, hand segmentation

Procedia PDF Downloads 413
2101 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
2100 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 98
2099 Highly Realistic Facial Expressions of Anthropomorphic Social Agent as a Factor in Solving the 'Uncanny Valley' Problem

Authors: Daniia Nigmatullina, Vlada Kugurakova, Maxim Talanov

Abstract:

We present a methodology and our plans of anthropomorphic social agent visualization. That includes creation of three-dimensional model of the virtual companion's head and its facial expressions. Talking Head is a cross-disciplinary project of developing of the human-machine interface with cognitive functions. During the creation of a realistic humanoid robot or a character, there might be the ‘uncanny valley’ problem. We think about this phenomenon and its possible causes. We are going to overcome the ‘uncanny valley’ by increasing of realism. This article discusses issues that should be considered when creating highly realistic characters (particularly the head), their facial expressions and speech visualization.

Keywords: anthropomorphic social agent, facial animation, uncanny valley, visualization, 3D modeling

Procedia PDF Downloads 291