Search results for: ordinal optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3324

Search results for: ordinal optimization

3324 The Effect of Initial Sample Size and Increment in Simulation Samples on a Sequential Selection Approach

Authors: Mohammad H. Almomani

Abstract:

In this paper, we argue the effect of the initial sample size, and the increment in simulation samples on the performance of a sequential approach that used in selecting the top m designs when the number of alternative designs is very large. The sequential approach consists of two stages. In the first stage the ordinal optimization is used to select a subset that overlaps with the set of actual best k% designs with high probability. Then in the second stage the optimal computing budget is used to select the top m designs from the selected subset. We apply the selection approach on a generic example under some parameter settings, with a different choice of initial sample size and the increment in simulation samples, to explore the impacts on the performance of this approach. The results show that the choice of initial sample size and the increment in simulation samples does affect the performance of a selection approach.

Keywords: Large Scale Problems, Optimal Computing Budget Allocation, ordinal optimization, simulation optimization

Procedia PDF Downloads 357
3323 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 102
3322 Self-Image of Police Officers

Authors: Leo Carlo B. Rondina

Abstract:

Self-image is an important factor to improve the self-esteem of the personnel. The purpose of the study is to determine the self-image of the police. The respondents were the 503 policemen assigned in different Police Station in Davao City, and they were chosen with the used of random sampling. With the used of Exploratory Factor Analysis (EFA), latent construct variables of police image were identified as follows; professionalism, obedience, morality and justice and fairness. Further, ordinal regression indicates statistical characteristics on ages 21-40 which means the age of the respondent statistically improves self-image.

Keywords: police image, exploratory factor analysis, ordinal regression, Galatea effect

Procedia PDF Downloads 291
3321 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs

Procedia PDF Downloads 394
3320 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad

Authors: Sai AKhila Budaraju

Abstract:

Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.

Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis

Procedia PDF Downloads 194
3319 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 340
3318 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling

Procedia PDF Downloads 127
3317 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection

Procedia PDF Downloads 203
3316 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun

Abstract:

Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.

Keywords: information entropy, structural optimization, truss structure, whale algorithm

Procedia PDF Downloads 251
3315 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata

Authors: Ramin Javadzadeh

Abstract:

The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.

Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization

Procedia PDF Downloads 611
3314 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy

Procedia PDF Downloads 376
3313 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: discrete set, linear combinatorial optimization, multi-objective optimization, Pareto solutions, partial permutation set, structural graph

Procedia PDF Downloads 170
3312 Co-Evolutionary Fruit Fly Optimization Algorithm and Firefly Algorithm for Solving Unconstrained Optimization Problems

Authors: R. M. Rizk-Allah

Abstract:

This paper presents co-evolutionary fruit fly optimization algorithm based on firefly algorithm (CFOA-FA) for solving unconstrained optimization problems. The proposed algorithm integrates the merits of fruit fly optimization algorithm (FOA), firefly algorithm (FA) and elite strategy to refine the performance of classical FOA. Moreover, co-evolutionary mechanism is performed by applying FA procedures to ensure the diversity of the swarm. Finally, the proposed algorithm CFOA- FA is tested on several benchmark problems from the usual literature and the numerical results have demonstrated the superiority of the proposed algorithm for finding the global optimal solution.

Keywords: firefly algorithm, fruit fly optimization algorithm, unconstrained optimization problems

Procedia PDF Downloads 540
3311 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 212
3310 Cuckoo Search (CS) Optimization Algorithm for Solving Constrained Optimization

Authors: Sait Ali Uymaz, Gülay Tezel

Abstract:

This paper presents the comparison results on the performance of the Cuckoo Search (CS) algorithm for constrained optimization problems. For constraint handling, CS algorithm uses penalty method. CS algorithm is tested on thirteen well-known test problems and the results obtained are compared to Particle Swarm Optimization (PSO) algorithm. Mean, best, median and worst values were employed for the analyses of performance.

Keywords: cuckoo search, particle swarm optimization, constrained optimization problems, penalty method

Procedia PDF Downloads 562
3309 An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem

Authors: Takahiro Hino, Michiharu Maeda

Abstract:

Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms.

Keywords: combinatorial optimization problems, particle swarm optimization, set-based particle swarm optimization, traveling salesman problem

Procedia PDF Downloads 556
3308 Application of the Global Optimization Techniques to the Optical Thin Film Design

Authors: D. Li

Abstract:

Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.

Keywords: optical coatings, optimization, design software, thin film design

Procedia PDF Downloads 317
3307 Optimization of Interface Radio of Universal Mobile Telecommunication System Network

Authors: O. Mohamed Amine, A. Khireddine

Abstract:

Telecoms operators are always looking to meet their share of the other customers, they try to gain optimum utilization of the deployed equipment and network optimization has become essential. This project consists of optimizing UMTS network, and the study area is an urban area situated in the center of Algiers. It was initially questions to become familiar with the different communication systems (3G) and the optimization technique, its main components, and its fundamental characteristics radios were introduced.

Keywords: UMTS, UTRAN, WCDMA, optimization

Procedia PDF Downloads 387
3306 Periodic Topology and Size Optimization Design of Tower Crane Boom

Authors: Wu Qinglong, Zhou Qicai, Xiong Xiaolei, Zhang Richeng

Abstract:

In order to achieve the layout and size optimization of the web members of tower crane boom, a truss topology and cross section size optimization method based on continuum is proposed considering three typical working conditions. Firstly, the optimization model is established by replacing web members with web plates. And the web plates are divided into several sub-domains so that periodic soft kill option (SKO) method can be carried out for topology optimization of the slender boom. After getting the optimized topology of web plates, the optimized layout of web members is formed through extracting the principal stress distribution. Finally, using the web member radius as design variable, the boom compliance as objective and the material volume of the boom as constraint, the cross section size optimization mathematical model is established. The size optimization criterion is deduced from the mathematical model by Lagrange multiplier method and Kuhn-Tucker condition. By comparing the original boom with the optimal boom, it is identified that this optimization method can effectively lighten the boom and improve its performance.

Keywords: tower crane boom, topology optimization, size optimization, periodic, SKO, optimization criterion

Procedia PDF Downloads 556
3305 Topology Optimization of Composite Structures with Material Nonlinearity

Authors: Mengxiao Li, Johnson Zhang

Abstract:

Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.

Keywords: topology optimization, material composition, nonlinear modeling, hardening rules

Procedia PDF Downloads 484
3304 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems

Authors: Akintayo E. Akinsunmade

Abstract:

The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.

Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development

Procedia PDF Downloads 17
3303 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, implementation, MATLAB

Procedia PDF Downloads 374
3302 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches

Procedia PDF Downloads 353
3301 Multidimensional Poverty and Child Cognitive Development

Authors: Bidyadhar Dehury, Sanjay Kumar Mohanty

Abstract:

According to the Right to Education Act of India, education is the fundamental right of all children of age group 6-14 year irrespective of their status. Using the unit level data from India Human Development Survey (IHDS), we tried to understand the inter-relationship between the level of poverty and the academic performance of the children aged 8-11 years. The level of multidimensional poverty is measured using five dimensions and 10 indicators using Alkire-Foster approach. The weighted deprivation score was obtained by giving equal weight to each dimension and indicators within the dimension. The weighted deprivation score varies from 0 to 1 and grouped into four categories as non-poor, vulnerable, multidimensional poor and sever multidimensional poor. The academic performance index was measured using three variables reading skills, math skills and writing skills using PCA. The bivariate and multivariate analysis was used in the analysis. The outcome variable was ordinal. So the predicted probabilities were calculated using the ordinal logistic regression. The predicted probabilities of good academic performance index was 0.202 if the child was sever multidimensional poor, 0.235 if the child was multidimensional poor, 0.264 if the child was vulnerable, and 0.316 if the child was non-poor. Hence, if the level of poverty among the children decreases from sever multidimensional poor to non-poor, the probability of good academic performance increases.

Keywords: multidimensional poverty, academic performance index, reading skills, math skills, writing skills, India

Procedia PDF Downloads 596
3300 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems

Authors: Elham Kazemi

Abstract:

Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.

Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms

Procedia PDF Downloads 521
3299 A Comparative Analysis of a Custom Optimization Experiment with Confidence Intervals in Anylogic and Optquest

Authors: Felipe Haro, Soheila Antar

Abstract:

This paper introduces a custom optimization experiment developed in AnyLogic, based on genetic algorithms, designed to ensure reliable optimization results by incorporating Montecarlo simulations and achieving a specified confidence level. To validate the custom experiment, we compared its performance with AnyLogic's built-in OptQuest optimization method across three distinct problems. Statistical analyses, including Welch's t-test, were conducted to assess the differences in performance. The results demonstrate that while the custom experiment shows advantages in certain scenarios, both methods perform comparably in others, confirming the custom approach as a reliable and effective tool for optimization under uncertainty.

Keywords: optimization, confidence intervals, Montecarlo simulation, optQuest, AnyLogic

Procedia PDF Downloads 23
3298 Comparative Analysis of Two Different Ant Colony Optimization Algorithm for Solving Travelling Salesman Problem

Authors: Sourabh Joshi, Tarun Sharma, Anurag Sharma

Abstract:

Ant Colony Optimization is heuristic Algorithm which has been proven a successful technique applied on number of combinatorial optimization problems. Two variants of Ant Colony Optimization algorithm named Ant System and Max-Min Ant System are implemented in MATLAB to solve travelling Salesman Problem and the results are compared. In, this paper both systems are analyzed by solving the some Travelling Salesman Problem and depict which system solve the problem better in term of cost and time.

Keywords: Ant Colony Optimization, Travelling Salesman Problem, Ant System, Max-Min Ant System

Procedia PDF Downloads 485
3297 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 418
3296 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 403
3295 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 51