Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3962

Search results for: corporate credit rating prediction

3962 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
3961 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
3960 E-Hailing Taxi Industry Management Mode Innovation Based on the Credit Evaluation

Authors: Yuan-lin Liu, Ye Li, Tian Xia

Abstract:

There are some shortcomings in Chinese existing taxi management modes. This paper suggests to establish the third-party comprehensive information management platform and put forward an evaluation model based on credit. Four indicators are used to evaluate the drivers’ credit, they are passengers’ evaluation score, driving behavior evaluation, drivers’ average bad record number, and personal credit score. A weighted clustering method is used to achieve credit level evaluation for taxi drivers. The management of taxi industry is based on the credit level, while the grade of the drivers is accorded to their credit rating. Credit rating determines the cost, income levels, the market access, useful period of license and the level of wage and bonus, as well as violation fine. These methods can make the credit evaluation effective. In conclusion, more credit data will help to set up a more accurate and detailed classification standard library.

Keywords: credit, mobile internet, e-hailing taxi, management mode, weighted cluster

Procedia PDF Downloads 325
3959 Modelling the Dynamics of Corporate Bonds Spreads with Asymmetric GARCH Models

Authors: Sélima Baccar, Ephraim Clark

Abstract:

This paper can be considered as a new perspective to analyse credit spreads. A comprehensive empirical analysis of conditional variance of credit spreads indices is performed using various GARCH models. Based on a comparison between traditional and asymmetric GARCH models with alternative functional forms of the conditional density, we intend to identify what macroeconomic and financial factors have driven daily changes in the US Dollar credit spreads in the period from January 2011 through January 2013. The results provide a strong interdependence between credit spreads and the explanatory factors related to the conditions of interest rates, the state of the stock market, the bond market liquidity and the exchange risk. The empirical findings support the use of asymmetric GARCH models. The AGARCH and GJR models outperform the traditional GARCH in credit spreads modelling. We show, also, that the leptokurtic Student-t assumption is better than the Gaussian distribution and improves the quality of the estimates, whatever the rating or maturity.

Keywords: corporate bonds, default risk, credit spreads, asymmetric garch models, student-t distribution

Procedia PDF Downloads 473
3958 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure

Authors: Heba Abdelmotaal

Abstract:

This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.

Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression

Procedia PDF Downloads 360
3957 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: corporate governance, stock price, performance, panel data analysis

Procedia PDF Downloads 393
3956 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 377
3955 The Role and Effectiveness of Audit Committee in Corporate Governance of Credit Institutions

Authors: Tina Vuko, Marija Maretić, Marko Čular

Abstract:

The aim of this study is to analyze the role and effectiveness of internal mechanism (audit committee) of corporate governance on credit institutions performance in Croatia. Based on research objective, sample of 78 credit institutions listed on Zagreb Stock Exchange, from 2007 to 2012, has been collected and efficiency index of audit committee (EIAC) has been created. Based on the sample and created EIAC, conclusions are as follows: audit committees of credit institutions have medium efficiency, based on EIAC measurement; there is a significant difference in audit committee effectiveness, in observed period; there is no positive relationship between audit committee effectiveness and credit institution performance; there is a significant difference between level of audit committee effectiveness and audit firm type. Future research should contain increased number of elements in EIAC creation and increased sample, for all obligators who need to establish audit committee.

Keywords: corporate governance, audit committee, financial institutions, efficiency index of audit committee

Procedia PDF Downloads 320
3954 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 79
3953 The Impact of the Enron Scandal on the Reputation of Corporate Social Responsibility Rating Agencies

Authors: Jaballah Jamil

Abstract:

KLD (Peter Kinder, Steve Lydenberg and Amy Domini) research & analytics is an independent intermediary of social performance information that adopts an investor-pay model. KLD rating agency does not have an explicit monitoring on the rated firm which suggests that KLD ratings may not include private informations. Moreover, the incapacity of KLD to predict accurately the extra-financial rating of Enron casts doubt on the reliability of KLD ratings. Therefore, we first investigate whether KLD ratings affect investors' perception by studying the effect of KLD rating changes on firms' financial performances. Second, we study the impact of the Enron scandal on investors' perception of KLD rating changes by comparing the effect of KLD rating changes on firms' financial performances before and after the failure of Enron. We propose an empirical study that relates a number of equally-weighted portfolios returns, excess stock returns and book-to-market ratio to different dimensions of KLD social responsibility ratings. We first find that over the last two decades KLD rating changes influence significantly and negatively stock returns and book-to-market ratio of rated firms. This finding suggests that a raise in corporate social responsibility rating lowers the firm's risk. Second, to assess the Enron scandal's effect on the perception of KLD ratings, we compare the effect of KLD rating changes before and after the Enron scandal. We find that after the Enron scandal this significant effect disappears. This finding supports the view that the Enron scandal annihilates the KLD's effect on Socially Responsible Investors. Therefore, our findings may question results of recent studies that use KLD ratings as a proxy for Corporate Social Responsibility behavior.

Keywords: KLD social rating agency, investors' perception, investment decision, financial performance

Procedia PDF Downloads 439
3952 Board of Directors Characteristics and Credit Union Financial Performance

Authors: Luisa Unda, Kamran Ahmed, Paul Mather

Abstract:

We examine the effect of board characteristics on the performance and asset quality of credit unions in Australia, using a large sample covering the period 2004-2012. Credit unions are unique in that they are customer-owned financial institutions and directors are democratically elected by members, which is distinctly different from other financial institutions, such as commercial banks. We find that board remuneration, board expertise, and attendance at board meetings have significantly positive impacts on credit union performance and asset quality, while board members who hold multiple directorships (busy directors), have a significant negative impact on credit union performance. Financial performance also improves with larger boards and long-tenured directors in credit unions. All of these relations hold after we control for alternative measures of performance, credit union characteristics and endogeneity problem.

Keywords: credit unions, corporate governance, board of directors, financial performance, Australia, asset quality

Procedia PDF Downloads 518
3951 Mathematical Model of Corporate Bond Portfolio and Effective Border Preview

Authors: Sergey Podluzhnyy

Abstract:

One of the most important tasks of investment and pension fund management is building decision support system which helps to make right decision on corporate bond portfolio formation. Today there are several basic methods of bond portfolio management. They are duration management, immunization and convexity management. Identified methods have serious disadvantage: they do not take into account credit risk or insolvency risk of issuer. So, identified methods can be applied only for management and evaluation of high-quality sovereign bonds. Applying article proposes mathematical model for building an optimal in case of risk and yield corporate bond portfolio. Proposed model takes into account the default probability in formula of assessment of bonds which results to more correct evaluation of bonds prices. Moreover, applied model provides tools for visualization of the efficient frontier of corporate bonds portfolio taking into account the exposure to credit risk, which will increase the quality of the investment decisions of portfolio managers.

Keywords: corporate bond portfolio, default probability, effective boundary, portfolio optimization task

Procedia PDF Downloads 318
3950 Effect of Bank Specific and Macro Economic Factors on Credit Risk of Islamic Banks in Pakistan

Authors: Mati Ullah, Shams Ur Rahman

Abstract:

The purpose of this research study is to investigate the effect of macroeconomic and bank-specific factors on credit risk in Islamic banking in Pakistan. The future of financial institutions largely depends on how well they manage risks. Credit risk is an important type of risk affecting the banking sector. The current study has taken quarterly data for the period of 6 years, from 1st July 2014 to 30 Jun 2020. The data set consisted of secondary data. Data was extracted from the websites of the State Bank and World Bank and from the financial statements of the concerned banks. In this study, the Ordinary least square model was used for the analysis of the data. The results supported the hypothesis that macroeconomic factors and bank-specific factors have a significant effect on credit risk. Macroeconomic variables, Inflation and exchange rates have positive significant effects on credit risk. However, gross domestic product has a negative significant relationship with credit risk. Moreover, the corporate rate has no significant relation with credit risk. Internal variables, size, management efficiency, net profit share income and capital adequacy have been proven to influence positively and significantly the credit risk. However, loan to deposit-has a negative insignificance relationship with credit risk. The contribution of this article is that similar conclusions have been made regarding the influence of banking factors on credit risk.

Keywords: credit risk, Islamic banks, macroeconomic variables, banks specific variable

Procedia PDF Downloads 17
3949 Contemplating Preference Ratings of Corporate Social Responsibility Practices for Supply Chain Performance System Implementation

Authors: Mohit Tyagi, Pradeep Kumar

Abstract:

The objective of this research work is to identify and analyze the significant corporate social responsibility (CSR) practices with an aim to improve the supply chain performance of automobile industry located at National Capital Region (NCR) of India. To achieve the objective, 6 CSR practices have been considered and analyzed using expert’s preference rating (EPR) approach. The considered CSR practices are namely, Top management and employee awareness about CSR (P1), Employee involvement in social and environmental problems (P2), Protection of human rights (P3), Waste reduction, energy saving and water conservation (P4), Proper visibility of CSR guidelines (P5) and Broad perception towards CSR initiatives (P6). The outcomes of this research may help mangers in decision making processes and framing polices for SCP implementation under CSR context.

Keywords: supply chain performance, corporate social responsibility, CSR practices, expert’s preference rating approach

Procedia PDF Downloads 333
3948 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 486
3947 Developing a Risk Rating Tool for Shopping Centres

Authors: Prandesha Govender, Chris Cloete

Abstract:

Purpose: The objective of the paper is to develop a tool for the evaluation of the financial risk of a shopping center. Methodology: Important factors that indicate the success of a shopping center were identified from the available literature. Weights were allocated to these factors and a risk rating was calculated for 505 shopping centers in the largest province in South Africa by taking the factor scores, factor weights, and category weights into account. The ratings for ten randomly selected shopping centers were correlated with consumer feedback and standardized against the ECAI (External Credit Assessment Institutions) data for the same centers. The ratings were also mapped to corporates with the same risk rating to provide a better intuitive assessment of the meaning of the inherent risk of each center. Results: The proposed risk tool shows a strong linear correlation with consumer views and can be compared to expert opinions, such as that of fund managers and REITs. Interpretation of the tool was also illustrated by correlating the risk rating of selected shopping centers to the risk rating of reputable and established entities. Conclusions: The proposed Shopping Centre Risk Tool, used in conjunction with financial inputs from the relevant center, should prove useful to an investor when the desirability of investment in or expansion, renovation, or purchase of a shopping center is being considered.

Keywords: risk, shopping centres, risk modelling, investment, rating tool, rating scale

Procedia PDF Downloads 115
3946 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
3945 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications

Authors: Jisun Mo, Paola Boarin

Abstract:

The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.

Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification

Procedia PDF Downloads 248
3944 An Examination of the Link between Social Enterprise Orientation of an Organization and the Pursuit of Corporate Sustainability

Authors: Susan P. Teru, Jerome Nyameh

Abstract:

Many contemporary organizations are placing a greater emphasis on business enterprise systems as a means of generating higher levels of economic development and sustainability. Many business research and literature has also concur that enterprise drive economic development, giving little or no credit to social enterprise, whose profit is reinvest to the community development compare to the business enterprise that share their profit to shareholders. Economic development and corporate sustainability includes economic policies that affect the beneficiaries of the economic entity and how it support corporate sustainability as a multifaceted concept that requires organizational change and adaptation on different levels. In this paper, we provide a closer examination of this suggested link between the social enterprise orientation of an organization and the pursuit of corporate sustainability. We suggest that producing social enterprise increments may be best achieved by orienting social enterprise entrepreneurs system to promote economic development and corporate sustainability, which is the new approach to organizational excellent. To this end, we describe a new approach to the social enterprise process that includes social entrepreneur and the key drivers of economic development and corporate sustainability at each stage. We present a model of social enterprise that incorporates the main ideas of the paper and suggests a new perspective for thinking about how to foster and manage social enterprise to achieve high levels of economic development and corporate sustainability as a new ways of achieving organizational excellence. Specifically, we seek to assess (1) what constitutes a corporate sustainability-oriented organization culture, (2) whether it is possible for organizations to display a unified corporate sustainability as a result of social enterprise (3) whether organizations can become more sustainable through social enterprise change.

Keywords: social enterprise orientation, organization, the pursuit of corporate sustainability, business and management

Procedia PDF Downloads 423
3943 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 326
3942 Assessment of Mortgage Applications Using Fuzzy Logic

Authors: Swathi Sampath, V. Kalaichelvi

Abstract:

The assessment of the risk posed by a borrower to a lender is one of the common problems that financial institutions have to deal with. Consumers vying for a mortgage are generally compared to each other by the use of a number called the Credit Score, which is generated by applying a mathematical algorithm to information in the applicant’s credit report. The higher the credit score, the lower the risk posed by the candidate, and the better he is to be taken on by the lender. The objective of the present work is to use fuzzy logic and linguistic rules to create a model that generates Credit Scores.

Keywords: credit scoring, fuzzy logic, mortgage, risk assessment

Procedia PDF Downloads 405
3941 The Theory behind Logistic Regression

Authors: Jan Henrik Wosnitza

Abstract:

The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.

Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression

Procedia PDF Downloads 426
3940 Understanding the Nature of Capital Allocation Problem in Corporate Finance

Authors: Meltem Gurunlu

Abstract:

One of the central problems in corporate finance is the allocation of funds. This usually takes two forms: allocation of funds across firms in an economy or allocation of funds across projects or business units within a firm. The first one is typically related to the external markets (the bond market, the stock market, banks and finance companies) whereas the second form of the capital allocation is related to the internal capital markets in which corporate headquarters allocate capital to their business units. (within-group transfers, within-group credit markets, and within-group equity market). The main aim of this study is to investigate the nature of capital allocation dynamics by comparing the relevant studies carried out on external and internal capital markets with paying special significance to the business groups.

Keywords: internal capital markets, external capital markets, capital structure, capital allocation, business groups, corporate finance

Procedia PDF Downloads 194
3939 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 542
3938 Corporate Social Responsibility and Its Impact on Corporate Governance: Comparative Study between Listed Companies on Bucharest and Bombay Stock Exchange

Authors: L. Feleagă, M. Dumitrașcu, N. Feleagă

Abstract:

This article is a research on corporate governance. The aim of the study is to focus a special attention on the importance of corporate social responsibility and corporate governance, which are relevant, indeed necessary, for organizations. In this regard, we analyzed the corporate social responsibility in the context of corporate governance for companies listed on Bucharest and Bombay Stock Exchange. Therefore, we bring into the spotlight some differences between India and Romania linked with the importance ascribed to corporate social responsibility of a company. We presented the results of the demarche and we concluded suggestions regarding further research in this area. The study increases the awareness, identifies and articulates desirable behaviors, which are not intended to be exhaustive.

Keywords: corporate governance, corporate social responsibility, disclosure, listed companies

Procedia PDF Downloads 308
3937 Relationship between Independence Directors and Performance of Firms During Financial Crisis

Authors: Gladie Lui

Abstract:

The global credit crisis of 2008 aroused renewed interest in the effectiveness of corporate governance mechanisms to safeguard investor interests. In this paper, we measure the effect of the crisis from 2008 to 2009 on the stock performance of 976 Hong Kong-listed companies and examine its link to corporate governance mechanisms. It is evident that the crisis and the economic downturn affected different industries. Empirical results show that firms with an independent board and a high concentration of ownership and management ownership had lower abnormal stock returns, but a lower price volatility during the global financial crisis. These results highlight that no single corporate governance mechanism is fit for all types of financial crises and time frames. To strengthen investors’ confidence in the ability of companies to deal with such swift financial catastrophes, companies should enhance the dynamism and responsiveness of their governance mechanisms in times of turbulence.

Keywords: board of directors, capital market, corporate governance, financial crisis

Procedia PDF Downloads 428
3936 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
3935 Advanced Machine Learning Algorithm for Credit Card Fraud Detection

Authors: Manpreet Kaur

Abstract:

When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.

Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card

Procedia PDF Downloads 113
3934 Dissociation of CDS from CVA Valuation Under Notation Changes

Authors: R. Henry, J-B. Paulin, St. Fauchille, Ph. Delord, K. Benkirane, A. Brunel

Abstract:

In this paper, the CVA computation of interest rate swap is presented based on its rating. Rating and probability default given by Moody’s Investors Service are used to calculate our CVA for a specific swap with different maturities. With this computation, the influence of rating variation can be shown on CVA. The application is made to the analysis of Greek CDS variation during the period of Greek crisis between 2008 and 2011. The main point is the determination of correlation between the fluctuation of Greek CDS cumulative value and the variation of swap CVA due to change of rating

Keywords: CDS, computation, CVA, Greek crisis, interest rate swap, maturity, rating, swap

Procedia PDF Downloads 309
3933 Place and Role of Corporate Governance in Japan

Authors: Feddaoui Amina

Abstract:

In a broad sense, corporate governance covers the organization of the control and management. The term is also used in a narrower sense, to refer to the relationship between shareholders, and the company’s board. There are a lot of discussions devoted to the understanding of the corporate governance role and its principles. In this paper, we are going to describe the definition of corporate governance as a control system and its principles, and find the role of corporate governance and its pillars. Finally, we are going to drop the theoretical study on the case of Japan.

Keywords: corporate governance, place, role, Japan

Procedia PDF Downloads 336