Search results for: auto scanning beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3299

Search results for: auto scanning beam

3299 Patented Free-Space Optical System for Auto Aligned Optical Beam Allowing to Compensate Mechanical Misalignments

Authors: Aurelien Boutin

Abstract:

In optical systems such as Variable Optical Delay Lines, where a collimated beam has to go back and forth, corner cubes are used in order to keep the reflected beam parallel to the incoming beam. However, the reflected beam can be laterally shifted, which will lead to losses. In this paper, we report on a patented optical design that allows keeping the reflected beam with the exact same position and direction whatever the displacement of the corner cube leading to zero losses. After explaining how the optical design works and theoretically allows to compensate for any defects in the translation of the corner cube, we will present the results of experimental comparisons between a standard layout (i.e., only corner cubes) and our optical layout. To compare both optical layouts, we used a fiber-to-fiber coupling setup. It consists of a couple of lights from one fiber to the other, thanks to two lenses. The ensemble [fiber+lense] is fixed and called a collimator so that the light is coupled from one collimator to another. Each collimator was precisely made in order to have a precise working distance. In the experiment, we measured and compared the Insertion Losses (IL) variations between both collimators with the distance between them (i.e., natural Gaussian beam coupling losses) and between both collimators in the different optical layouts tested, with the same optical length propagation. We will show that the IL variations of our setup are less than 0.05dB with respect to the IL variations of collimators alone.

Keywords: free-space optics, variable optical delay lines, optical cavity, auto-alignment

Procedia PDF Downloads 103
3298 E-Survey: Cancer Treatment with Proton Beam Therapy in USA

Authors: Auj-E Taqaddas

Abstract:

The use of proton beam therapy is increasing globally. It seems to offer dosimetric advantages, especially in paediatric central nervous system (CNS) and brain tumours. A short E-survey was conducted to assess the clinical, technical, and educational resources and strategies employed in the state of the art proton beam therapy (PBT) centres in the USA to determine the current status of proton beam therapy. The study also aimed at finding out which PBT skills are in demand as well as what improvements are needed to ensure efficient treatment planning, delivery, and dosimetry. The study resulted in identifying areas for future research and development and in identifying cancers for which PBT is most suitable compared to other modalities to facilitate the implementation and use of PBT in clinical settings for cancer treatment.

Keywords: cancer, intensity modulated proton therapy, proton beam therapy, single field uniform scanning

Procedia PDF Downloads 208
3297 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 90
3296 A Method of the Semantic on Image Auto-Annotation

Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou

Abstract:

Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.

Keywords: image auto-annotation, color correlograms, Hash code, image retrieval

Procedia PDF Downloads 500
3295 Design of an Energy Efficient Electric Auto Rickshaw

Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar

Abstract:

Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.

Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment

Procedia PDF Downloads 290
3294 Structure-Phase States of Al-Si Alloy After Electron-Beam Treatment and Multicycle Fatigue

Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina

Abstract:

Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increase in fatigue life of the material has been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.

Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure

Procedia PDF Downloads 557
3293 Calibration of a Large Standard Step Height with Low Sampled Coherence Scanning Interferometry

Authors: Dahi Ghareab Abdelsalam Ibrahim

Abstract:

Scanning interferometry is commonly used for measuring the three-dimensional profiling of surfaces. Here, we used a scanning stage calibrated with standard gauge blocks to measure a standard step height of 200μm. The stage measures precisely the envelope of interference at the platen and at the surface of the step height. From the difference between the two envelopes, we measured the step height of the sample. Experimental measurements show that the measured value matches well with the nominal value of the step height. A light beam of 532nm from a Tungsten Lamp is collimated and incident on the interferometer. By scanning, two envelopes were produced. The envelope at the platen surface and the envelope at the object surface were determined precisely by a written program code, and then the difference between them was measured from the calibrated scanning stage. The difference was estimated to be in the range of 198 ± 2 μm.

Keywords: optical metrology, digital holography, interferometry, phase unwrapping

Procedia PDF Downloads 79
3292 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment

Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal

Abstract:

There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.

Keywords: auto-rickshaws, business model, GPS device, mobile application

Procedia PDF Downloads 230
3291 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 492
3290 A Design of Beam-Steerable Antenna Array for Use in Future Mobile Handsets

Authors: Naser Ojaroudi Parchin, Atta Ullah, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

A design of beam-steerable antenna array for the future cellular communication (5G) is presented. The proposed design contains eight elements of compact end-fire antennas arranged on the top edge of smartphone printed circuit board (PCB). Configuration of the antenna element consists of the conductive patterns on the top and bottom copper foil layers and a substrate layer with a via-hole. The simulated results including input-impedance and also fundamental radiation properties have been presented and discussed. The impedance bandwidth (S11 ≤ -10 dB) of the antenna spans from 17.5 to 21 GHz (more than 3 GHz bandwidth) with a resonance at 19 GHz. The antenna exhibits end-fire (directional) radiation beams with wide-angle scanning property and could be used for the future 5G beam-forming. Furthermore, the characteristics of the array design in the vicinity of user-hand are studied.

Keywords: beam-steering, end-fire radiation mode, mobile-phone antenna, phased array

Procedia PDF Downloads 160
3289 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 274
3288 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 341
3287 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: beam propagation, cos-Gaussian beam, numerical simulation, photorefractive crystal

Procedia PDF Downloads 503
3286 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 435
3285 Behavior of Castellated Beam Column Due to Cyclic Loads

Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin

Abstract:

The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.

Keywords: steel, castella, column beams, cyclic load

Procedia PDF Downloads 461
3284 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating

Procedia PDF Downloads 437
3283 Flexural Behavior for Prefabricated Angle Truss Composite Beams Using Precast Concrete

Authors: Jo Kwang-Won, Lee Ho-Jun, Choi In-Rak, Park Hong-Gun

Abstract:

Prefabricated angle truss composited beam is a kind of concrete encased composite beam. It is prefabricated at factory as Pratt truss with steel members. Double angle is used for top, bottom chords and vertical web member. Moreover, diagonal web member is steel plate. Its sectional shape looks like I-shape. This beam system has two stages. The first is construction stage in which the beam is directly connected to the column for resist construction load. This stage beam consists of Pratt truss and precast concrete. The stability of the beam is verified. The second is service stage. After the connection, cast-in-place concrete is used for composite action. Ultimate flexural capacity is verified and show advantage than RC and steel. In this paper, the beam flexural capacity is verified in both stages. And examined the flexural behavior of the beam.

Keywords: composite beam, prefabrication, angle, precast concrete, pratt truss

Procedia PDF Downloads 308
3282 Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

Authors: I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract:

We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1.

Keywords: anomalous couplings, future circular collider, large hadron electron collider, W-boson and Z-boson

Procedia PDF Downloads 386
3281 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 246
3280 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 457
3279 Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma

Authors: Sandeep Kumar, Naveen Gupta

Abstract:

The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing.

Keywords: non-Gaussian beam, collisional plasma, variational theory, self-focusing

Procedia PDF Downloads 197
3278 Transversal Connection Strengthening of T Section Beam Bridge with Brace System

Authors: Chen Chen

Abstract:

T section beam bridge has been widely used in China as it is low cost and easy to erect. Some of T section beam bridges only have end diagrams and the adjacent girders are connected by wet-joint along span, which leads to the damage of transversal connection becomes a serious problem in operation and maintenance. This paper presents a brace system to strengthen the transversal connection of T section beam bridge. The strengthening effect was discussed by experiments and finite element analysis. The results show that the proposed brace system can improve load transfer between adjacent girders. Based on experiments and FEA model, displacement of T section beam with proposed brace system reduced 14.9% and 19.1% respectively. Integral rigidity increased 19.4% by static experiments. The transversal connection of T section beam bridge can be improved efficiently.

Keywords: experiment, strengthening, T section beam bridge, transversal connection

Procedia PDF Downloads 286
3277 Cu Voids Detection of Electron Beam Inspection at the 5nm Node

Authors: Byungsik Moon

Abstract:

Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage.

Keywords: electron beam inspection, EBI, landing energy, Cu metal voids, bright field inspection

Procedia PDF Downloads 77
3276 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods

Authors: M. Ghobeiti-Hasab

Abstract:

Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.

Keywords: Sr-ferrite, sol-gel, magnetic properties, calcination

Procedia PDF Downloads 241
3275 Beam Methods Applications to the Design of Curved Pulsed Beams

Authors: Timor Melamed

Abstract:

In this study, it consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, the evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. it derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, the harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrary curved trajectories, offering new possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods.

Keywords: pulsed Airy beams, pulsed beams, pulsed curved beams, transient fields

Procedia PDF Downloads 27
3274 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna

Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn

Abstract:

To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.

Keywords: switched beam, shorted circuit, single element, signal to interference ratio

Procedia PDF Downloads 174
3273 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 182
3272 Structural and Magnetic Properties of CoFe2-xNdxO4 Spinel Ferrite Nanoparticles

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this present work, CoFe2-xNdxO4 (0.0 ≤ x ≥0.1) spinel ferrite nanoparticles were synthesized by starch-assisted sol-gel auto-combustion method. Powder X-ray diffraction patterns were revealed the formation of cubic spinel ferrite with the signature of NdFeO3 phase at higher Nd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range between 5-15 nm. Raman and Fourier Transform Infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at octahedral as well as a tetrahedral site in CoFe2-xNdxO4 nanoparticles. The change in magnetic properties with a variation of concentration of Nd3+ ions in cobalt ferrite nanoparticles was observed.

Keywords: nanoparticles, spinel ferrites, sol-gel auto-combustion method, CoFe2-xNdxO4

Procedia PDF Downloads 502
3271 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 386
3270 Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation

Authors: A. Keshavarz, Z. Roosta

Abstract:

In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media.

Keywords: paraxial group transformation, nonlocal nonlinear media, cos-Gaussian beam, ABCD law

Procedia PDF Downloads 345