Search results for: Runge-Kutta Fourth Order Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29565

Search results for: Runge-Kutta Fourth Order Method

29565 Optimization of Fourth Order Discrete-Approximation Inclusions

Authors: Elimhan N. Mahmudov

Abstract:

The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.

Keywords: difference, optimization, fourth, approximation, transversality

Procedia PDF Downloads 374
29564 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation

Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping

Abstract:

In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.

Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula

Procedia PDF Downloads 500
29563 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points

Procedia PDF Downloads 352
29562 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 366
29561 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations

Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa

Abstract:

In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.

Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method

Procedia PDF Downloads 312
29560 Wavelet Method for Numerical Solution of Fourth Order Wave Equation

Authors: A. H. Choudhury

Abstract:

In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.

Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method

Procedia PDF Downloads 315
29559 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 84
29558 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 122
29557 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation

Procedia PDF Downloads 432
29556 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method

Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh

Abstract:

The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.

Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method

Procedia PDF Downloads 358
29555 Study on a Family of Optimal Fourth-Order Multiple-Root Solver

Authors: Young Hee Geum

Abstract:

In this paper,we develop the complex dynamics of a family of optimal fourth-order multiple-root solvers and plot their basins of attraction. Mobius conjugacy maps and extraneous fixed points applied to a prototype quadratic polynomial raised to the power of the known integer multiplicity m are investigated. A 300 x 300 uniform grid centered at the origin covering 3 x 3 square region is chosen to visualize the initial values on each basin of attraction in accordance with a coloring scheme based on their dynamical behavior. The illustrative basins of attractions applied to various test polynomials and the corresponding statistical data for convergence are shown to confirm the theoretical convergence.

Keywords: basin of attraction, conjugacy, fourth-order, multiple-root finder

Procedia PDF Downloads 293
29554 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation

Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping

Abstract:

In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.

Keywords: explicit group method, finite difference, helmholtz equation, rotated grid, standard grid

Procedia PDF Downloads 456
29553 On the Fourth-Order Hybrid Beta Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

This paper introduces a family of fourth-order hybrid beta polynomial kernels developed for statistical analysis. The assessment of these kernels' performance centers on two critical metrics: asymptotic mean integrated squared error (AMISE) and kernel efficiency. Through the utilization of both simulated and real-world datasets, a comprehensive evaluation was conducted, facilitating a thorough comparison with conventional fourth-order polynomial kernels. The evaluation procedure encompassed the computation of AMISE and efficiency values for both the proposed hybrid kernels and the established classical kernels. The consistently observed trend was the superior performance of the hybrid kernels when compared to their classical counterparts. This trend persisted across diverse datasets, underscoring the resilience and efficacy of the hybrid approach. By leveraging these performance metrics and conducting evaluations on both simulated and real-world data, this study furnishes compelling evidence in favour of the superiority of the proposed hybrid beta polynomial kernels. The discernible enhancement in performance, as indicated by lower AMISE values and higher efficiency scores, strongly suggests that the proposed kernels offer heightened suitability for statistical analysis tasks when compared to traditional kernels.

Keywords: AMISE, efficiency, fourth-order Kernels, hybrid Kernels, Kernel density estimation

Procedia PDF Downloads 70
29552 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 360
29551 Spline Solution of Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 295
29550 Under the ‘Fourth World’: A Discussion to the Transformation of Character-Settings in Chinese Ethnic Minority Films

Authors: Sicheng Liu

Abstract:

Based on the key issue of the current fourth world studies, the article aims to analyze the features of character-settings in Chinese ethnic minority films. As a generalizable transformation, this feature progresses from a microcosmic representation. It argues that, as the mediation, films note down the current state of people and their surroundings, while the ‘fourth world’ theorization (or the fourth cinema) provides a new perspective to ethnic minority topics in China. Like the ‘fourth cinema’ focusing on the depiction of indigeneity groups, the ethnic minority films portrait the non-Han nationalities in China. Both types possess the motif of returning history-writing to the minority members’ own hand. In this article, the discussion entirely involves three types of cinematic role-settings in Chinese minority themed films, which illustrates that, similar to the creative principle of the fourth film, the themes and narratives of these films are becoming more individualized, with more concern to minority grassroots.

Keywords: 'fourth world', Chinese ethnic minority films, ethnicity and culture reflection, 'mother tongue' (muyu), highlighting to individual spiritual

Procedia PDF Downloads 188
29549 Collocation Method Using Quartic B-Splines for Solving the Modified RLW Equation

Authors: A. A. Soliman

Abstract:

The Modified Regularized Long Wave (MRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The temporal evaluation of a Maxwellian initial pulse is then studied.

Keywords: collocation method, MRLW equation, Quartic B-splines, solitons

Procedia PDF Downloads 303
29548 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
29547 Numerical Simulation of Different Enhanced Oil Recovery (EOR) Scenarios on a Volatile Oil Reservoir

Authors: Soheil Tavakolpour

Abstract:

Enhance Oil Recovery (EOR) can be considered as an undeniable action in reservoirs life period. Different kind of EOR methods are available, but suitable EOR method depends on reservoir properties, like rock and fluid properties. In this paper, we nominated fifth SPE’s Comparative Solution Projects (CSP) for testing different scenarios. We used seven EOR scenarios for this reservoir and we simulated it for 10 years after 2 years production without any injection. The first scenario is waterflooding for whole of the 10 years period. The second scenario is gas injection for ten years. The third scenario is Water-Alternation-Gas (WAG). In the next scenario, water injected for 4 years before starting WAG injection for the next 6 years. In the fifth scenario, water injected after 6 years WAG injection for 4 years. For sixth and last scenarios, all the things are similar to fourth and fifth scenarios, but gas injected instead of water. Results show that fourth scenario was the most efficient method for 10 years EOR, but it resulted very high water production. Fifth scenario was efficient too, with little water production in comparison to the fourth scenario. Gas injection was not economically attractive. In addition to high gas production, it produced less oil in comparison to other scenarios.

Keywords: WAG, SPE’s comparative solution projects, numerical simulation, EOR scenarios

Procedia PDF Downloads 434
29546 Compact Finite Difference Schemes for Fourth Order Parabolic Partial Differential Equations

Authors: Sufyan Muhammad

Abstract:

Recently, in achieving highly efficient but at the same time highly accurate solutions has become the major target of numerical analyst community. The concept is termed as compact schemes and has gained great popularity and consequently, we construct compact schemes for fourth order parabolic differential equations used to study vibrations in structures. For the superiority of newly constructed schemes, we consider range of examples. We have achieved followings i.e. (a) numerical scheme utilizes minimum number of stencil points (which means new scheme is compact); (b) numerical scheme is highly accurate (which means new scheme is reliable) and (c) numerical scheme is highly efficient (which means new scheme is fast).

Keywords: central finite differences, compact schemes, Bernoulli's equations, finite differences

Procedia PDF Downloads 288
29545 Impact of the Fourth Industrial Revolution on Food Security in South Africa

Authors: Fiyinfoluwa Giwa, Nicholas Ngepah

Abstract:

This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.

Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square

Procedia PDF Downloads 75
29544 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)

Authors: Jiya Mohammed, Ibrahim Ismail Giwa

Abstract:

Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.

Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow

Procedia PDF Downloads 474
29543 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model

Authors: Swarn Singh, Suruchi Singh

Abstract:

In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.

Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability

Procedia PDF Downloads 472
29542 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects

Authors: H. Triki, Y. Hamaizi, A. El-Akrmi

Abstract:

We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.

Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution

Procedia PDF Downloads 636
29541 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 337
29540 Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Authors: N. Senu, I. A. Kasim, F. Ismail, N. Bachok

Abstract:

In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing method when solving the second-order differential equations with periodic solutions using constant step size.

Keywords: dissipation, oscillatory solutions, phase-lag, Runge-Kutta methods

Procedia PDF Downloads 411
29539 Indian Business-Papers in Industrial Revolution 4.0: A Paradigm Shift

Authors: Disha Batra

Abstract:

The Industrial Revolution 4.0 is quite different, and a paradigm shift is underway in the media industry. With the advent of automated journalism and social media platforms, newspaper organizations have changed the way news was gathered and reported. The emergence of the fourth industrial revolution in the early 21st century has made the newspapers to adapt the changing technologies to remain relevant. This paper investigates the content of Indian business-papers in the era of the fourth industrial revolution and how these organizations have emerged in the time of convergence. The study is the content analyses of the top three Indian business dailies as per IRS (Indian Readership Survey) 2017 over a decade. The parametric analysis of the different parameters (source of information, use of illustrations, advertisements, layout, and framing, etc.) have been done in order to come across with the distinct adaptations and modifications by these dailies. The paper significantly dwells upon the thematic analysis of these newspapers in order to explore and find out the coverage given to various sub-themes of EBF (economic, business, and financial) journalism. Further, this study reveals the effect of high-speed algorithm-based trading, the aftermath of the fourth industrial revolution on the creative and investigative aspect of delivering financial stories by these respective newspapers. The study indicates a change heading towards an ongoing paradigm shift in the business newspaper industry with an adequate change in the source of information gathering along with the subtle increase in the coverage of financial news stories over the time.

Keywords: business-papers, business news, financial news, industrial revolution 4.0.

Procedia PDF Downloads 115
29538 Hyperelastic Formulation for Orthotropic Materials

Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann

Abstract:

In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.

Keywords: finite strain, hyperelastic, invariants, orthotropic

Procedia PDF Downloads 446
29537 Decomposition of Third-Order Discrete-Time Linear Time-Varying Systems into Its Second- and First-Order Pairs

Authors: Mohamed Hassan Abdullahi

Abstract:

Decomposition is used as a synthesis tool in several physical systems. It can also be used for tearing and restructuring, which is large-scale system analysis. On the other hand, the commutativity of series-connected systems has fascinated the interest of researchers, and its advantages have been emphasized in the literature. The presentation looks into the necessary conditions for decomposing any third-order discrete-time linear time-varying system into a commutative pair of first- and second-order systems. Additional requirements are derived in the case of nonzero initial conditions. MATLAB simulations are used to verify the findings. The work is unique and is being published for the first time. It is critical from the standpoints of synthesis and/or design. Because many design techniques in engineering systems rely on tearing and reconstruction, this is the process of putting together simple components to create a finished product. Furthermore, it is demonstrated that regarding sensitivity to initial conditions, some combinations may be better than others. The results of this work can be extended for the decomposition of fourth-order discrete-time linear time-varying systems into lower-order commutative pairs, as two second-order commutative subsystems or one first-order and one third-order commutative subsystems.

Keywords: commutativity, decomposition, discrete time-varying systems, systems

Procedia PDF Downloads 110
29536 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition

Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi

Abstract:

In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.

Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data

Procedia PDF Downloads 403