Search results for: Poisson generalized linear model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19273

Search results for: Poisson generalized linear model

19273 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors

Procedia PDF Downloads 570
19272 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti

Abstract:

The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 435
19271 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 135
19270 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi

Abstract:

Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 159
19269 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 354
19268 Proficient Estimation Procedure for a Rare Sensitive Attribute Using Poisson Distribution

Authors: S. Suman, G. N. Singh

Abstract:

The present manuscript addresses the estimation procedure of population parameter using Poisson probability distribution when characteristic under study possesses a rare sensitive attribute. The generalized form of unrelated randomized response model is suggested in order to acquire the truthful responses from respondents. The resultant estimators have been proposed for two situations when the information on an unrelated rare non-sensitive characteristic is known as well as unknown. The properties of the proposed estimators are derived, and the measure of confidentiality of respondent is also suggested for respondents. Empirical studies are carried out in the support of discussed theory.

Keywords: Poisson distribution, randomized response model, rare sensitive attribute, non-sensitive attribute

Procedia PDF Downloads 266
19267 Model Averaging for Poisson Regression

Authors: Zhou Jianhong

Abstract:

Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.

Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics

Procedia PDF Downloads 520
19266 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 200
19265 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression

Procedia PDF Downloads 137
19264 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China

Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An

Abstract:

Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.

Keywords: density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton

Procedia PDF Downloads 151
19263 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
19262 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia

Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui

Abstract:

This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.

Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia

Procedia PDF Downloads 397
19261 Statistical Modeling of Mobile Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad S. Daba, J. P. Dubois

Abstract:

Understanding the statistics of non-isotropic scattering multipath channels that fade randomly with respect to time, frequency, and space in a mobile environment is very crucial for the accurate detection of received signals in wireless and cellular communication systems. In this paper, we derive stochastic models for the probability density function (PDF) of the shift in the carrier frequency caused by the Doppler Effect on the received illuminating signal in the presence of a dominant line of sight. Our derivation is based on a generalized Clarke’s and a two-wave partially developed scattering models, where the statistical distribution of the frequency shift is shown to be consistent with the power spectral density of the Doppler shifted signal.

Keywords: Doppler shift, filtered Poisson process, generalized Clark’s model, non-isotropic scattering, partially developed scattering, Rician distribution

Procedia PDF Downloads 372
19260 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 367
19259 Count Regression Modelling on Number of Migrants in Households

Authors: Tsedeke Lambore Gemecho, Ayele Taye Goshu

Abstract:

The main objective of this study is to identify the determinants of the number of international migrants in a household and to compare regression models for count response. This study is done by collecting data from total of 2288 household heads of 16 randomly sampled districts in Hadiya and Kembata-Tembaro zones of Southern Ethiopia. The Poisson mixed models, as special cases of the generalized linear mixed model, is explored to determine effects of the predictors: age of household head, farm land size, and household size. Two ethnicities Hadiya and Kembata are included in the final model as dummy variables. Stepwise variable selection has indentified four predictors: age of head, farm land size, family size and dummy variable ethnic2 (0=other, 1=Kembata). These predictors are significant at 5% significance level with count response number of migrant. The Poisson mixed model consisting of the four predictors with random effects districts. Area specific random effects are significant with the variance of about 0.5105 and standard deviation of 0.7145. The results show that the number of migrant increases with heads age, family size, and farm land size. In conclusion, there is a significantly high number of international migration per household in the area. Age of household head, family size, and farm land size are determinants that increase the number of international migrant in households. Community-based intervention is needed so as to monitor and regulate the international migration for the benefits of the society.

Keywords: Poisson regression, GLM, number of migrant, Hadiya and Kembata Tembaro zones

Procedia PDF Downloads 283
19258 Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 156
19257 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects

Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov

Abstract:

The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.

Keywords: effective properties, scale effects, surface defects, voids elasticity

Procedia PDF Downloads 418
19256 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization

Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor

Abstract:

In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.

Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions

Procedia PDF Downloads 557
19255 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices

Authors: Manideepa Saha, Jahnavi Chakrabarty

Abstract:

Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.

Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR

Procedia PDF Downloads 188
19254 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad Daba, Jean-Pierre Dubois

Abstract:

Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process

Procedia PDF Downloads 448
19253 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform

Procedia PDF Downloads 128
19252 Generalized Central Paths for Convex Programming

Authors: Li-Zhi Liao

Abstract:

The central path has played the key role in the interior point method. However, the convergence of the central path may not be true even in some convex programming problems with linear constraints. In this paper, the generalized central paths are introduced for convex programming. One advantage of the generalized central paths is that the paths will always converge to some optimal solutions of the convex programming problem for any initial interior point. Some additional theoretical properties for the generalized central paths will be also reported.

Keywords: central path, convex programming, generalized central path, interior point method

Procedia PDF Downloads 327
19251 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 108
19250 The Road to Tunable Structures: Comparison of Experimentally Characterised and Numerical Modelled Auxetic Perforated Sheet Structures

Authors: Arthur Thirion

Abstract:

Auxetic geometries allow the generation of a negative Poisson ratio (NPR) in conventional materials. This behaviour allows materials to have certain improved mechanical properties, including impact resistance and altered synclastic behaviour. This means these structures have significant potential when it comes to applications as chronic wound dressings. To this end, 6 different "perforated sheet" structure types were 3D printed. These structures all had variations of key geometrical features included cell length and angle. These were tested in compression and tension to assess their Poisson ratio. Both a positive and negative Poisson ratio was generated by the structures depending on the loading. The a/b ratio followed by θ has been shown to impact the Poisson ratio significantly. There is still a significant discrepancy between modelled and observed behaviour.

Keywords: auxetic materials, 3D printing, negative Poisson's ratio, tunable Poisson's ratio

Procedia PDF Downloads 116
19249 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models

Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif

Abstract:

This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.

Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function

Procedia PDF Downloads 395
19248 On Fourier Type Integral Transform for a Class of Generalized Quotients

Authors: A. S. Issa, S. K. Q. AL-Omari

Abstract:

In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.

Keywords: Boehmian, Fourier integral, Fourier type integral, generalized quotient

Procedia PDF Downloads 365
19247 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
19246 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 118
19245 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 563
19244 Extension of Positive Linear Operator

Authors: Manal Azzidani

Abstract:

This research consideres the extension of special functions called Positive Linear Operators. the bounded linear operator which defined from normed space to Banach space will extend to the closure of the its domain, And extend identified linear functional on a vector subspace by Hana-Banach theorem which could be generalized to the positive linear operators.

Keywords: extension, positive operator, Riesz space, sublinear function

Procedia PDF Downloads 517