Abstracts | Civil and Environmental Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2581

World Academy of Science, Engineering and Technology

[Civil and Environmental Engineering]

Online ISSN : 1307-6892

1261 Strength and Permeability Characteristics of Fiber Reinforced Concrete

Authors: Amrit Pal Singh Arora

Abstract:

The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age.

Keywords: curing age, fiber shape, fly ash, Darcy’s law, Ppermeability

Procedia PDF Downloads 297
1260 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 257
1259 Use of Coconut Shell as a Replacement of Normal Aggregates in Rigid Pavements

Authors: Prakash Parasivamurthy, Vivek Rama Das, Ravikant Talluri, Veena Jawali

Abstract:

India ranks among third in the production of coconut besides Philippines and Indonesia. About 92% of the total production in the country is contributed from four southern states especially, Kerala (45.22%), Tamil Nadu (26.56%), Karnataka (10.85%), and Andhra Pradesh (8.93%). Other states, such as Goa, Maharashtra, Odisha, West Bengal, and those in the northeast (Tripura and Assam) account for the remaining 8.44%. The use of coconut shell as coarse aggregate in concrete has never been a usual practice in the industry, particularly in areas where light weight concrete is required for non-load bearing walls, non-structural floors, and strip footings. The high cost of conventional building materials is a major factor affecting construction delivery in India. In India, where abundant agricultural and industrial wastes are discharged, these wastes can be used as potential material or replacement material in the construction industry. This will have double the advantages viz., reduction in the cost of construction material and also as a means of disposal of wastes. Therefore, an attempt has been made in this study to utilize the coconut shell (CS) as coarse aggregate in rigid pavement. The present study was initiated with the characterization of materials by the basic material testing. The casted moulds are cured and tests are conducted for hardened concrete. The procedure is continued with determination of fck (Characteristic strength), E (Modulus of Elasticity) and µ (Poisson Value) by the test results obtained. For the analytical studies, rigid pavement was modeled by the KEN PAVE software, finite element software developed specially for road pavements and simultaneously design of rigid pavement was carried out with Indian standards. Results show that physical properties of CSAC (Coconut Shell Aggregate Concrete) with 10% replacement gives better results. The flexural strength of CSAC is found to increase by 4.25% as compared to control concrete. About 13 % reduction in pavement thickness is observed using optimum coconut shell.

Keywords: coconut shell, rigid pavement, modulus of elasticity, poison ratio

Procedia PDF Downloads 223
1258 Assessment of Causes of Building Collapse in Nigeria

Authors: Olufemi Oyedele

Abstract:

Building collapse (BC) in Nigeria is becoming a regular occurrence, each recording great casualties in the number of lives and materials lost. Building collapse is a situation where building which has been completed and occupied, completed but not occupied or under construction, collapses on its own due to action or inaction of man or due to natural event like earthquake, storm, flooding, tsunami or wildfire. It is different from building demolition. There are various causes of building collapse and each case requires expert judgment to decide the cause of its collapse. Rate of building collapse is a reflection of the level of organization and control of building activities and degree of sophistication of the construction professionals in a country. This study explored the use of case study by examining the causes of six (6) collapsed buildings (CB) across Nigeria. Samples of materials from the sites of the collapsed buildings were taken for testing and analysis, while critical observations were made at the sites to note the conditions of the ground (building base). The study found out that majority of the building collapses in Nigeria were due to poor workmanship, sub-standard building materials, followed by bad building base and poor design. The National Building Code 2006 is not effective due to lack of enforcement and the Physical Development Departments of states and Federal Capital Territory are just mere agents of corruption allowing all types of construction without building approvals.

Keywords: building collapse, concrete tests, differential settlement, integrity test, quality control

Procedia PDF Downloads 511
1257 Evaluation of Earthquake Induced Cost for Mid-Rise Buildings

Authors: Gulsah Olgun, Ozgur Bozdag, Yildirim Ertutar

Abstract:

This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost.

Keywords: expected damage cost, limit states, loss estimation, performance based design

Procedia PDF Downloads 254
1256 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: fragility analysis, seismic performance, tunnel lining, vulnerability

Procedia PDF Downloads 300
1255 Techniques of Construction Management in Civil Engineering

Authors: Mamoon M. Atout

Abstract:

The Middle East Gulf region has witnessed rapid growth and development in many areas over the last two decades. The development of the real-estate sector, construction industry and infrastructure projects are a major share of the development that has participated in the civilization of the countries of the Gulf. Construction industry projects were planned and managed by different types of experts, who came from all over the world having different types of experiences in construction management and industry. Some of these projects were completed on time, while many were not, due to many accumulating factors. Many accumulated factors are considered as the principle reason for the problem experienced at the project construction stage, which reflected negatively on the project success. Specific causes of delay have been identified by construction managers to avoid any unexpected delays through proper analysis and considerations to some implications such as risk assessment and analysis for many potential problems to ensure that projects will be delivered on time. Construction management implications were adopted and considered by project managers who have experience and knowledge in applying the techniques of the system of engineering construction management. The aim of this research is to determine the benefits of the implications of construction management by the construction team and level of considerations of the techniques and processes during the project development and construction phases to avoid any delay in the projects. It also aims to determine the factors that participate to project completion delays in case project managers are not well committed to their roles and responsibilities. The results of the analysis will determine the necessity of the applications required by the project team to avoid the causes of delays that help them deliver projects on time, e.g. verifying tender documents, quantities and preparing the construction method of the project.

Keywords: construction management, control process, cost control, planning and scheduling

Procedia PDF Downloads 230
1254 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking

Authors: Farshad Amini, Kejun Wen

Abstract:

The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.

Keywords: monitoring, paving fabrics, performance, reflective cracking

Procedia PDF Downloads 316
1253 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria

Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo

Abstract:

Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.

Keywords: education and training, gaps, green building, workforce

Procedia PDF Downloads 298
1252 Application of Artificial Ground-Freezing to Construct a Passenger Interchange Tunnel for the Subway Line 14 in Paris, France

Authors: G. Lancellotta, G. Di Salvo, A. Rigazio, A. Davout, V. Pastore, G. Tonoli, A. Martin, P. Jullien, R. Jagow-Klaff, R. Wernecke

Abstract:

Artificial ground freezing (AGF) technique is a well-proven soil improvement approach used worldwide to construct shafts, tunnels and many other civil structures in difficult subsoil or ambient conditions. As part of the extension of Line 14 of the Paris subway, a passenger interchange tunnel between the new station at Porte de CI ichy and the new Tribunal the Grand Instance has been successfully constructed using this technique. The paper presents the successful application of AGF by Liquid Nitrogen and Brine implemented to provide structural stability and groundwater cut-off around the passenger interchange tunnel. The working conditions were considered to be rather challenging, due to the proximity of a hundred-year-old existing service tunnel of the Line 13, and subsoil conditions on site. Laboratory tests were carried out to determine the relevant soil parameters for hydro-thermal-mechanical aspects and to implement numerical analyses. Monitoring data were used in order to check and control the development and the efficiency of the freezing process as well as to back analyze the parameters assumed for the design, both during the freezing and thawing phases.

Keywords: artificial ground freezing, brine method, case history, liquid nitrogen

Procedia PDF Downloads 208
1251 Developing Pavement Maintenance Management System (PMMS) for Small Cities, Aswan City Case Study

Authors: Ayman Othman, Tallat Ali

Abstract:

A pavement maintenance management system (PMMS) was developed for the city of Aswan as a model of a small city to provide the road maintenance department in Aswan city with the capabilities for comprehensive planning of the maintenance activities needed to put the internal pavement network into desired physical condition in view of maintenance budget constraints. The developed system consists of three main stages. First is the inventory & condition survey stage where the internal pavement network of Aswan city was inventoried and its actual conditions were rated in segments of 100 meters length. Second is the analysis stage where pavement condition index (PCI) was calculated and the most appropriate maintenance actions were assigned for each segment. The total maintenance budget was also estimated and a parameter based ranking criteria were developed to prioritize maintenance activities when the available maintenance budget is not sufficient. Finally comes the packaging stage where approved maintenance budget is packed into maintenance projects for field implementation. System results indicate that, the system output maintenance budget is very reasonable and the system output maintenance programs agree to a great extent with the actual maintenance needs of the network. Condition survey of Aswan city road network showed that roughness is the most dominate distress. In general, the road network can be considered in a fairly reasonable condition, however, the developed PMMS needs to be officially adapted to maintain the road network in a desirable condition and to prevent further deterioration.

Keywords: pavement, maintenance, management, system, distresses, survey, ranking

Procedia PDF Downloads 231
1250 Water Infrastructure Asset Management: A Comparative Analysis of Three Urban Water Utilities in South Africa

Authors: Elkington S. Mnguni

Abstract:

Water and sanitation services in South Africa are characterized by both achievements and challenges. After the end of apartheid in 1994 the newly elected government faced the challenge of eradicating backlogs with respect to access to basic services, including water and sanitation. Capital investment made in the development of new water and sanitation infrastructure to provide basic services to previously disadvantaged communities has grown, to a certain extent, at the expense of investment in the operation and maintenance of new and existing infrastructure. Challenges resulting from aging infrastructure and poor plant performance highlight the need for investing in the maintenance, rehabilitation, and replacement of existing infrastructure to optimize the return on investment. Advanced water infrastructure asset management (IAM) is key to achieving adequate levels of service, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution and associated risks. Against this backdrop, this paper presents an appraisal of water and sanitation IAM systems in South Africa’s three utilities, being metropolitan cities in the Gauteng Province. About a quarter of the national population lives in the three rapidly urbanizing cities of Johannesburg, Ekurhuleni and Tshwane, located in a semi-arid region. A literature review has been done and field visits to some of the utility facilities are being conducted. Semi-structured interviews will be conducted with the three utilities. The following critical factors are being analysed in terms of compliance with the national Water Services IAM Strategy (2011) and other applicable legislation: asset registers; capacity of assets; current and predicted demand; funding availability / budget allocations; plans: operation & maintenance, renewal & replacement, and risk management; no-drop status (non-revenue water levels); blue drop status (water quality); green drop status (effluent quality); and skills availability. Some of the key challenges identified in the literature review include: funding constraints, Skills shortage, and wastewater treatment plants operating beyond their design capacities. These challenges will be verified during field visits and research interviews. Gaps between literature and practice will be identified and relevant recommendations made if necessary. The objective of this study is to contribute to the resolution of the challenges brought about by the backlogs in the operation and maintenance of water and sanitation assets in the country in general, and in the three cities in particular, thus improving the sustainability thereof.

Keywords: asset management, backlogs, levels of service, sustainability, water and sanitation infrastructure

Procedia PDF Downloads 209
1249 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking

Authors: W. C. Bracken

Abstract:

Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.

Keywords: concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation

Procedia PDF Downloads 228
1248 Study of the Thermomechanical Behavior of a Concrete Element

Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir

Abstract:

The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.

Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength

Procedia PDF Downloads 292
1247 Investigation of the Mechanical Performance of Hot Mix Asphalt Modified with Crushed Waste Glass

Authors: Ayman Othman, Tallat Ali

Abstract:

The successive increase of generated waste materials like glass has led to many environmental problems. Using crushed waste glass in hot mix asphalt paving has been though as an alternative to landfill disposal and recycling. This paper discusses the possibility of utilizing crushed waste glass, as a part of fine aggregate in hot mix asphalt in Egypt. This is done through evaluation of the mechanical properties of asphalt concrete mixtures mixed with waste glass and determining the appropriate glass content that can be adapted in asphalt pavement. Four asphalt concrete mixtures with various glass contents, namely; 0%, 4%, 8% and 12% by weight of total mixture were studied. Evaluation of the mechanical properties includes performing Marshall stability, indirect tensile strength, fracture energy and unconfined compressive strength tests. Laboratory testing had revealed the enhancement in both compressive strength and Marshall stability test parameters when the crushed glass was added to asphalt concrete mixtures. This enhancement was accompanied with a very slight reduction in both indirect tensile strength and fracture energy when glass content up to 8% was used. Adding more than 8% of glass causes a sharp reduction in both indirect tensile strength and fracture energy. Testing results had also shown a reduction in the optimum asphalt content when the waste glass was used. Measurements of the heat loss rate of asphalt concrete mixtures mixed with glass revealed their ability to hold heat longer than conventional mixtures. This can have useful application in asphalt paving during cold whether or when a long period of post-mix transportation is needed.

Keywords: waste glass, hot mix asphalt, mechanical performance, indirect tensile strength, fracture energy, compressive strength

Procedia PDF Downloads 299
1246 Fragility Assessment for Vertically Irregular Buildings with Soft Storey

Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi

Abstract:

Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.

Keywords: special steel moment frame, soft storey, incremental dynamic analysis, fragility curve

Procedia PDF Downloads 335
1245 Sustainable Development Variables to Assess Transport Infrastructure in Remote Destinations

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

The assessment variables of the accessibility and the sustainability of access infrastructure for remote regions may vary significant by location and a wide range of factors may affect the decision process. In this paper, the environmental disturbance implications of transportation system to key demand and supply variables impact the economic system in remote destination are descripted. According to a systemic approach, the key sustainability variables deals with decision making process that have to be included in strategic plan for the critical transport infrastructure development and their relationship to regional socioeconomic system are presented. The application deals with the development of railway in remote destinations, where the traditional CBA not include the external cost generated by the environmental impacts that may have a range of diverse impacts on transport infrastructure and services. The analysis output provides key messages to decision and policy makers towards sustainable development of transport infrastructure, especially for remote destinations where accessibility is a key factor of regional economic development and social stability. The key conclusion could be essential useful for relevant applications in remote regions in the same latitude.

Keywords: sustainable development in remote regions, transport infrastructure, strategic planning, sustainability variables

Procedia PDF Downloads 333
1244 Establishment of Decision Support Center for Managing Natural Hazard Consequence in Kuwait

Authors: Abdullah Alenezi, Mane Alsudrawi, Rafat Misak

Abstract:

Kuwait is faced with a potentially wide and harmful range of both natural and anthropogenic hazardous events such as dust storms, floods, fires, nuclear accidents, earthquakes, oil spills, tsunamis and other disasters. For Kuwait can be highly vulnerable to these complex environmental risks, an up-to-date and in-depth understanding of their typology, genesis, and impact on the Kuwaiti society is needed. Adequate anticipation and management of environmental crises further require a comprehensive system of decision support to the benefit of decision makers to further bridge the gap between (technical) risk understanding and public action. For that purpose, the Kuwait Institute for Scientific Research (KISR), intends to establish a decision support center for management of the environmental crisis in Kuwait. The center will support policy makers, stakeholders and national committees with technical information that helps them efficiently and effectively assess, monitor to manage environmental disasters using decision support tools. These tools will build on state of the art quantification and visualization techniques, such as remote sensing information, Geographical Information Systems (GIS), simulation and prediction models, early warning systems, etc. The center is conceived as a central facility which will be designed, operated and managed by KISR in coordination with national authorities and decision makers of the country. Our vision is that by 2035 the center will be recognized as a leading national source of scientific advice on national risk management in Kuwait and build unity of effort among Kuwaiti’s institutions, government agencies, public and private organizations through provision and sharing of information. The project team now focuses on capacity building through upgrading some KISR facilities manpower development, build strong collaboration with international alliance.

Keywords: decision support, environment, hazard, Kuwait

Procedia PDF Downloads 294
1243 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 232
1242 A Study on the Possibility of Utilizing the Converter Slag as the Cement Admixture

Authors: Choi Woo-Seok, Kim Eun-Sup, Ha Eun-Ryong

Abstract:

Converter slag is used as a low-value product like a construction fill material and soil stabilizer unlike electric furnace slag and blast furnace slag. This study is fundamental research for utilizing the converter slag as the cement admixture. Magnetic separation was conducted for quality improvement of the converter slag, and it was classified according to into 3 types; SA: pure slag, SB: separated slag, SC: remained slag after separating. In XRF result, SB slag was Fe₂CO₃ ratio was higher, and CaO ratio was lower than SA. SC slag was Fe₂CO₃ ratio was lower, and CaO ratio was higher than SA. In compressive strength test for soil cement using SA, SB, SC as the cement admixture, SC slag was more effective in terms of 28days compressive strength than SA, SB slag. In this result, it is considered that the remained material (SC) after magnetic separation is available as the cement admixture.

Keywords: converter slag, magnetic separation, cement admixture, compressive strength

Procedia PDF Downloads 764
1241 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: expanding material, heavyweight concrete, self-healing performance, synthetic fiber

Procedia PDF Downloads 324
1240 Risk Factors Affecting Construction Project Cost in Oman

Authors: Omar Amoudi, Latifa Al Brashdi

Abstract:

Construction projects are always subject to risks and uncertainties due to its unique and dynamic nature, outdoor work environment, the wide range of skills employed, various parties involved in addition to situation of construction business environment at large. Altogether, these risks and uncertainties affect projects objectives and lead to cost overruns, delay, and poor quality. Construction projects in Oman often experience cost overruns and delay. Managing these risks and reducing their impacts on construction cost requires firstly identifying these risks, and then analyzing their severity on project cost to obtain deep understanding about these risks. This in turn will assist construction managers in managing and tacking these risks. This paper aims to investigate the main risk factors that affect construction projects cost in the Sultanate of Oman. In order to achieve the main aim, literature review was carried out to identify the main risk factors affecting construction cost. Thirty-three risk factors were identified from the literature. Then, a questionnaire survey was designed and distributed among construction professionals (i.e., client, contractor and consultant) to obtain their opinion toward the probability of occurrence for each risk factor and its possible impact on construction project cost. The collected data was analyzed based on qualitative aspects and in several ways. The severity of each risk factor was obtained by multiplying the probability occurrence of a risk factor with its impact. The findings of this study reveal that the most significant risk factors that have high severity impact on construction project cost are: Change of Oil Price, Delay of Materials and Equipment Delivery, Changes in Laws and Regulations, Improper Budgeting, and Contingencies, Lack of Skilled Workforce and Personnel, Delays Caused by Contractor, Delays of Owner Payments, Delays Caused by Client, and Funding Risk. The results can be used as a basis for construction managers to make informed decisions and produce risk response procedures and strategies to tackle these risks and reduce their negative impacts on construction project cost.

Keywords: construction cost, construction projects, Oman, risk factors, risk management

Procedia PDF Downloads 319
1239 Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan

Authors: Magdi M. E. Zumrawi

Abstract:

Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings.

Keywords: culvert, erosion, failure, sustainability

Procedia PDF Downloads 299
1238 Modelling of Damage as Hinges in Segmented Tunnels

Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero

Abstract:

Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.

Keywords: damage, hinges, lining, tunnel

Procedia PDF Downloads 375
1237 Satisfaction Evaluation on the Fundamental Public Services for a Large-Scale Indemnificatory Residential Community: A Case Study of Nanjing

Authors: Dezhi Li, Peng Cui, Bo Zhang, Tengyuan Chang

Abstract:

In order to solve the housing problem for the low-income families, the construction of affordable housing is booming in China. However, due to various reasons, the service facilities and systems in the indemnificatory residential community meet many problems. This article established a Satisfaction Evaluation System of the Fundamental Public Services for Large-scale Indemnificatory Residential Community based on the national standards and local criteria and developed evaluation methods and processes. At last, in the case of Huagang project in Nanjing, the satisfaction of basic public service is calculated according to a survey of local residents.

Keywords: indemnificatory residential community, public services, satisfaction evaluation, structural equation modeling

Procedia PDF Downloads 343
1236 Influence of Pier Modification Techniques for Reducing Scour around Bridge Piers

Authors: Rashid Farooq, Abdul Razzaq Ghumman, Hashim Nisar Hashmi

Abstract:

Bridge piers often fail all over the world and the whole structure may be endangered due to scouring phenomena. Scouring has been linked to catastrophic failures that lead into the loss of human lives. Various techniques have been employed to extenuate the scouring process in order to assist the bridge designs. Pier modifications plays vital role to control scouring at the vicinity of the pier. This experimental study aims at monitoring the effectiveness of pier modification and temporal development of scour depth around a bridge pier by providing a collar, a cable or openings under the same flow conditions. Provision of a collar around the octagonal pier reduced more scour depth than that for other two configurations. Providing a collar around the octagonal pier found to be the best in reducing scour. The scour depth in front of pier was found to be 19.5% less than that at the octagonal pier without any modifications. Similarly, the scour depth around the octagonal pier having provision of a cable was less than that at pier with provision of openings. The scour depth around an octagonal pier was also compared with a plain circular pier and found to be 9.1% less.

Keywords: Scour, octagonal pier, collar, cable

Procedia PDF Downloads 251
1235 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches

Authors: Shani Brathwaite, Deborah Villarroel-Lamb

Abstract:

Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.

Keywords: beach porosity, empirical models, infiltration, swash, wave run-up

Procedia PDF Downloads 340
1234 Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load

Authors: A. Aarabzadeh, R. Hizaji

Abstract:

Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.

Keywords: deep beam, cyclic load, reinforced concrete, fixed-ended

Procedia PDF Downloads 343
1233 Effect of Volcanic Ash and Recycled Aggregates in Concrete

Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement

Procedia PDF Downloads 290
1232 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station

Procedia PDF Downloads 271