Search results for: sustainable construction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1902

Search results for: sustainable construction

12 Effects of the In-Situ Upgrading Project in Afghanistan: A Case Study on the Formally and Informally Developed Areas in Kabul

Authors: Maisam Rafiee, Chikashi Deguchi, Akio Odake, Minoru Matsui, Takanori Sata

Abstract:

Cities in Afghanistan have been rapidly urbanized; however, many parts of these cities have been developed with no detailed land use plan or infrastructure. In other words, they have been informally developed without any government leadership. The new government started the In-situ Upgrading Project in Kabul to upgrade roads, the water supply network system, and the surface water drainage system on the existing street layout in 2002, with the financial support of international agencies. This project is an appropriate emergency improvement for living life, but not an essential improvement of living conditions and infrastructure problems because the life expectancies of the improved facilities are as short as 10–15 years, and residents cannot obtain land tenure in the unplanned areas. The Land Readjustment System (LRS) conducted in Japan has good advantages that rearrange irregularly shaped land lots and develop the infrastructure effectively. This study investigates the effects of the In-situ Upgrading Project on private investment, land prices, and residents’ satisfaction with projects in Kart-e-Char, where properties are registered, and in Afshar-e-Silo Lot 1, where properties are unregistered. These projects are located 5 km and 7 km from the CBD area of Kabul, respectively. This study discusses whether LRS should be applied to the unplanned area based on the questionnaire and interview responses of experts experienced in the In-situ Upgrading Project who have knowledge of LRS. The analysis results reveal that, in Kart-e-Char, a lot of private investment has been made in the construction of medium-rise (five- to nine-story) buildings for commercial and residential purposes. Land values have also incrementally increased since the project, and residents are commonly satisfied with the road pavement, drainage systems, and water supplies, but dissatisfied with the poor delivery of electricity as well as the lack of public facilities (e.g., parks and sport facilities). In Afshar-e-Silo Lot 1, basic infrastructures like paved roads and surface water drainage systems have improved from the project. After the project, a few four- and five-story residential buildings were built with very low-level private investments, but significant increases in land prices were not evident. The residents are satisfied with the contribution ratio, drainage system, and small increase in land price, but there is still no drinking water supply system or tenure security; moreover, there are substandard paved roads and a lack of public facilities, such as parks, sport facilities, mosques, and schools. The results of the questionnaire and interviews with the four engineers highlight the problems that remain to be solved in the unplanned areas if LRS is applied—namely, land use differences, types and conditions of the infrastructure still to be installed by the project, and time spent for positive consensus building among the residents, given the project’s budget limitation.

Keywords: In-Situ Upgrading, Kabul, Land Readjustment, Land value, Planned areas, Private investment, Resident satisfaction, Unplanned areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1090
11 The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement

Authors: J. H. Boonzaaier, A. C. Brent

Abstract:

South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.

Keywords: Institutional agent, water governance, polycentric water resource management, water resource management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
10 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change

Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui

Abstract:

Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.

Keywords: Behavioural change, ICT technologies, water consumption, water conservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
9 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topologically order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for exchange photon energy with molecules without changes in topology (i.e., chemical transformation into products do not propagate any changes or variation in the network topology of physical configuration). The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure, and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies, which are automated, real-time, reliable, reproducible and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody–antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due the pathogenic archival architecture of cell clusters.

Keywords: autopoiesis, engineering topology, photonic system molecular structure, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
8 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
7 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis

Abstract:

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Keywords: Community resilience, problem based learning, project based learning, case study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
6 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
5 A Quasi-Systematic Review on Effectiveness of Social and Cultural Sustainability Practices in Built Environment

Authors: Asif Ali, Daud Salim Faruquie

Abstract:

With the advancement of knowledge about the utility and impact of sustainability, its feasibility has been explored into different walks of life. Scientists, however; have established their knowledge in four areas viz environmental, economic, social and cultural, popularly termed as four pillars of sustainability. Aspects of environmental and economic sustainability have been rigorously researched and practiced and huge volume of strong evidence of effectiveness has been founded for these two sub-areas. For the social and cultural aspects of sustainability, dependable evidence of effectiveness is still to be instituted as the researchers and practitioners are developing and experimenting methods across the globe. Therefore, the present research aimed to identify globally used practices of social and cultural sustainability and through evidence synthesis assess their outcomes to determine the effectiveness of those practices. A PICO format steered the methodology which included all populations, popular sustainability practices including walkability/cycle tracks, social/recreational spaces, privacy, health & human services and barrier free built environment, comparators included ‘Before’ and ‘After’, ‘With’ and ‘Without’, ‘More’ and ‘Less’ and outcomes included Social well-being, cultural coexistence, quality of life, ethics and morality, social capital, sense of place, education, health, recreation and leisure, and holistic development. Search of literature included major electronic databases, search websites, organizational resources, directory of open access journals and subscribed journals. Grey literature, however, was not included. Inclusion criteria filtered studies on the basis of research designs such as total randomization, quasirandomization, cluster randomization, observational or single studies and certain types of analysis. Studies with combined outcomes were considered but studies focusing only on environmental and/or economic outcomes were rejected. Data extraction, critical appraisal and evidence synthesis was carried out using customized tabulation, reference manager and CASP tool. Partial meta-analysis was carried out and calculation of pooled effects and forest plotting were done. As many as 13 studies finally included for final synthesis explained the impact of targeted practices on health, behavioural and social dimensions. Objectivity in the measurement of health outcomes facilitated quantitative synthesis of studies which highlighted the impact of sustainability methods on physical activity, Body Mass Index, perinatal outcomes and child health. Studies synthesized qualitatively (and also quantitatively) showed outcomes such as routines, family relations, citizenship, trust in relationships, social inclusion, neighbourhood social capital, wellbeing, habitability and family’s social processes. The synthesized evidence indicates slight effectiveness and efficacy of social and cultural sustainability on the targeted outcomes. Further synthesis revealed that such results of this study are due weak research designs and disintegrated implementations. If architects and other practitioners deliver their interventions in collaboration with research bodies and policy makers, a stronger evidence-base in this area could be generated.

Keywords: Built environment, cultural sustainability, social sustainability, sustainable architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
4 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones

Abstract:

Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.

Keywords: Auto Rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
3 An Initial Assessment of the Potential Contribution of ‘Community Empowerment’ to Mitigating the Drivers of Deforestation and Forest Degradation, in Giam Siak Kecil-Bukit Batu Biosphere Reserve

Authors: A. Sunkar, Y. Santosa, S. B. Rushayati

Abstract:

Indonesia has experienced annual forest fires that have rapidly destroyed and degraded its forests. Fires in the peat swamp forests of Riau Province, have set the stage for problems to worsen, this being the ecosystem most prone to fires (which are also the most difficult, to extinguish). Despite various efforts to curb deforestation, and forest degradation processes, severe forest fires are still occurring. To find an effective solution, the basic causes of the problems must be identified. It is therefore critical to have an indepth understanding of the underlying causal factors that have contributed to deforestation and forest degradation as a whole, in order to attain reductions in their rates. An assessment of the drivers of deforestation and forest degradation was carried out, in order to design and implement measures that could slow these destructive processes. Research was conducted in Giam Siak Kecil–Bukit Batu Biosphere Reserve (GSKBB BR), in the Riau Province of Sumatera, Indonesia. A biosphere reserve was selected as the study site because such reserves aim to reconcile conservation with sustainable development. A biosphere reserve should promote a range of local human activities, together with development values that are in line spatially and economically with the area conservation values, through use of a zoning system. Moreover, GSKBB BR is an area with vast peatlands, and is experiencing forest fires annually. Various factors were analysed to assess the drivers of deforestation and forest degradation in GSKBB BR; data were collected from focus group discussions with stakeholders, key informant interviews with key stakeholders, field observation and a literature review. Landsat satellite imagery was used to map forest-cover changes for various periods. Analysis of landsat images, taken during the period 2010-2014, revealed that within the non-protected area of core zone, there was a trend towards decreasing peat swamp forest areas, increasing land clearance, and increasing areas of community oilpalm and rubber plantations. Fire was used for land clearing and most of the forest fires occurred in the most populous area (the transition area). The study found a relationship between the deforested/ degraded areas, and certain distance variables, i.e. distance from roads, villages and the borders between the core area and the buffer zone. The further the distance from the core area of the reserve, the higher was the degree of deforestation and forest degradation. Research findings suggested that agricultural expansion may be the direct cause of deforestation and forest degradation in the reserve, whereas socio-economic factors were the underlying driver of forest cover changes; such factors consisting of a combination of sociocultural, infrastructural, technological, institutional (policy and governance), demographic (population pressure) and economic (market demand) considerations. These findings indicated that local factors/problems were the critical causes of deforestation and degradation in GSKBB BR. This research therefore concluded that reductions in deforestation and forest degradation in GSKBB BR could be achieved through ‘local actor’-tailored approaches such as community empowerment.

Keywords: Actor-led solution, community empowerment, drivers of deforestation and forest degradation, Giam Siak Kecil– Bukit Batu Biosphere Reserve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
2 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: Aerobatic maneuvers, G force, hypoxia, suborbital flight, commercial astronauts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
1 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan

Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami

Abstract:

In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.

Keywords: Integrated solid waste management, waste segregation, waste bank, community development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980