Search results for: similarity search.
1107 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.
Keywords: Context-sensitive search, image search, media search, similarity ranking, similarity search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6411106 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. In the study, 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests that the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.
Keywords: Ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4301105 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8271104 A Combination of Similarity Ranking and Time for Social Research Paper Searching
Authors: P. Jomsri
Abstract:
Nowadays social media are important tools for web resource discovery. The performance and capabilities of web searches are vital, especially search results from social research paper bookmarking. This paper proposes a new algorithm for ranking method that is a combination of similarity ranking with paper posted time or CSTRank. The paper posted time is static ranking for improving search results. For this particular study, the paper posted time is combined with similarity ranking to produce a better ranking than other methods such as similarity ranking or SimRank. The retrieval performance of combination rankings is evaluated using mean values of NDCG. The evaluation in the experiments implies that the chosen CSTRank ranking by using weight score at ratio 90:10 can improve the efficiency of research paper searching on social bookmarking websites.Keywords: combination ranking, information retrieval, time, similarity ranking, static ranking, weight score
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16661103 Non-Overlapping Hierarchical Index Structure for Similarity Search
Authors: Mounira Taileb, Sid Lamrous, Sami Touati
Abstract:
In order to accelerate the similarity search in highdimensional database, we propose a new hierarchical indexing method. It is composed of offline and online phases. Our contribution concerns both phases. In the offline phase, after gathering the whole of the data in clusters and constructing a hierarchical index, the main originality of our contribution consists to develop a method to construct bounding forms of clusters to avoid overlapping. For the online phase, our idea improves considerably performances of similarity search. However, for this second phase, we have also developed an adapted search algorithm. Our method baptized NOHIS (Non-Overlapping Hierarchical Index Structure) use the Principal Direction Divisive Partitioning (PDDP) as algorithm of clustering. The principle of the PDDP is to divide data recursively into two sub-clusters; division is done by using the hyper-plane orthogonal to the principal direction derived from the covariance matrix and passing through the centroid of the cluster to divide. Data of each two sub-clusters obtained are including by a minimum bounding rectangle (MBR). The two MBRs are directed according to the principal direction. Consequently, the nonoverlapping between the two forms is assured. Experiments use databases containing image descriptors. Results show that the proposed method outperforms sequential scan and SRtree in processing k-nearest neighbors.
Keywords: K-nearest neighbour search, multi-dimensional indexing, multimedia databases, similarity search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631102 Personalization of Web Search Using Web Page Clustering Technique
Authors: Amol Bapuso Rajmane, Pradeep M. Patil, Prakash J. Kulkarni
Abstract:
The Information Retrieval community is facing the problem of effective representation of Web search results. When we organize web search results into clusters it becomes easy to the users to quickly browse through search results. The traditional search engines organize search results into clusters for ambiguous queries, representing each cluster for each meaning of the query. The clusters are obtained according to the topical similarity of the retrieved search results, but it is possible for results to be totally dissimilar and still correspond to the same meaning of the query. People search is also one of the most common tasks on the Web nowadays, but when a particular person’s name is queried the search engines return web pages which are related to different persons who have the same queried name. By placing the burden on the user of disambiguating and collecting pages relevant to a particular person, in this paper, we have developed an approach that clusters web pages based on the association of the web pages to the different people and clusters that are based on generic entity search.
Keywords: Entity resolution, information retrieval, graph based disambiguation, web people search, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041101 An Improved Fast Search Method Using Histogram Features for DNA Sequence Database
Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.Keywords: Fast search, DNA sequence, Histogram feature, Smith-Waterman algorithm, Local search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13301100 Another Approach of Similarity Solution in Reversed Stagnation-point Flow
Authors: Vai Kuong Sin, Chon Kit Chio
Abstract:
In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.Keywords: reversed stagnation-point flow, similarity solutions, asymptotic solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501099 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks
Authors: Kriuk Boris, Kriuk Fedor
Abstract:
This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we present a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.
Keywords: Siamese networks, Semantic textual similarity, Similarity functions, STS Benchmark dataset, Threshold selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791098 Incorporating Semantic Similarity Measure in Genetic Algorithm : An Approach for Searching the Gene Ontology Terms
Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias, Hany T. Alashwal, Rohayanti Hassan, FarhanMohamed
Abstract:
The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm.Keywords: Gene Ontology, Semantic similarity measure, Genetic algorithm, Ontology search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901097 A New Similarity Measure on Intuitionistic Fuzzy Sets
Authors: Binyamin Yusoff, Imran Taib, Lazim Abdullah, Abd Fatah Wahab
Abstract:
Intuitionistic fuzzy sets as proposed by Atanassov, have gained much attention from past and latter researchers for applications in various fields. Similarity measures between intuitionistic fuzzy sets were developed afterwards. However, it does not cater the conflicting behavior of each element evaluated. We therefore made some modification to the similarity measure of IFS by considering conflicting concept to the model. In this paper, we concentrate on Zhang and Fu-s similarity measures for IFSs and some examples are given to validate these similarity measures. A simple modification to Zhang and Fu-s similarity measures of IFSs was proposed to find the best result according to the use of degree of indeterminacy. Finally, we mark up with the application to real decision making problems.Keywords: Intuitionistic fuzzy sets, similarity measures, multicriteriadecision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28501096 A New Similarity Measure Based On Edge Counting
Authors: T. Slimani, B. Ben Yaghlane, K. Mellouli
Abstract:
In the field of concepts, the measure of Wu and Palmer [1] has the advantage of being simple to implement and have good performances compared to the other similarity measures [2]. Nevertheless, the Wu and Palmer measure present the following disadvantage: in some situations, the similarity of two elements of an IS-A ontology contained in the neighborhood exceeds the similarity value of two elements contained in the same hierarchy. This situation is inadequate within the information retrieval framework. To overcome this problem, we propose a new similarity measure based on the Wu and Palmer measure. Our objective is to obtain realistic results for concepts not located in the same way. The obtained results show that compared to the Wu and Palmer approach, our measure presents a profit in terms of relevance and execution time.
Keywords: Hierarchy, IS-A ontology, Semantic Web, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891095 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms
Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias
Abstract:
Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.
Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31281094 Alphanumeric Hand-Prints Classification: Similarity Analysis between Local Decisions
Authors: G. Dimauro, S. Impedovo, M.G. Lucchese, R. Modugno, G. Pirlo
Abstract:
This paper presents the analysis of similarity between local decisions, in the process of alphanumeric hand-prints classification. From the analysis of local characteristics of handprinted numerals and characters, extracted by a zoning method, the set of classification decisions is obtained and the similarity among them is investigated. For this purpose the Similarity Index is used, which is an estimator of similarity between classifiers, based on the analysis of agreements between their decisions. The experimental tests, carried out using numerals and characters from the CEDAR and ETL database, respectively, show to what extent different parts of the patterns provide similar classification decisions.
Keywords: Handwriting Recognition, Optical Character Recognition, Similarity Index, Zoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13091093 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591092 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping
Authors: Adnan A. Y. Mustafa
Abstract:
In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.
Keywords: Big images, binary images, similarity, matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9201091 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees
Authors: Doru Anastasiu Popescu, Dan Rădulescu
Abstract:
In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.
Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13101090 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.
Keywords: GraphViz representation, semantic relatedness, similarity measurement, WordNet similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8371089 Application of a Similarity Measure for Graphs to Web-based Document Structures
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser
Abstract:
Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931088 Measuring the Structural Similarity of Web-based Documents: A Novel Approach
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian
Abstract:
Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.
Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581087 NOHIS-Tree: High-Dimensional Index Structure for Similarity Search
Authors: Mounira Taileb, Sami Touati
Abstract:
In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.Keywords: High-dimensional indexing, k-nearest neighborssearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461086 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461085 Application of l1-Norm Minimization Technique to Image Retrieval
Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra
Abstract:
Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.
Keywords: l1-norm minimization, content based retrieval, modified Gabor function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34341084 Organization Model of Semantic Document Repository and Search Techniques for Studying Information Technology
Authors: Nhon Do, Thuong Huynh, An Pham
Abstract:
Nowadays, organizing a repository of documents and resources for learning on a special field as Information Technology (IT), together with search techniques based on domain knowledge or document-s content is an urgent need in practice of teaching, learning and researching. There have been several works related to methods of organization and search by content. However, the results are still limited and insufficient to meet user-s demand for semantic document retrieval. This paper presents a solution for the organization of a repository that supports semantic representation and processing in search. The proposed solution is a model which integrates components such as an ontology describing domain knowledge, a database of document repository, semantic representation for documents and a file system; with problems, semantic processing techniques and advanced search techniques based on measuring semantic similarity. The solution is applied to build a IT learning materials management system of a university with semantic search function serving students, teachers, and manager as well. The application has been implemented, tested at the University of Information Technology, Ho Chi Minh City, Vietnam and has achieved good results.Keywords: document retrieval system, knowledgerepresentation, document representation, semantic search, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101083 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.
Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22311082 A Similarity Measure for Clustering and its Applications
Authors: Guadalupe J. Torres, Ram B. Basnet, Andrew H. Sung, Srinivas Mukkamala, Bernardete M. Ribeiro
Abstract:
This paper introduces a measure of similarity between two clusterings of the same dataset produced by two different algorithms, or even the same algorithm (K-means, for instance, with different initializations usually produce different results in clustering the same dataset). We then apply the measure to calculate the similarity between pairs of clusterings, with special interest directed at comparing the similarity between various machine clusterings and human clustering of datasets. The similarity measure thus can be used to identify the best (in terms of most similar to human) clustering algorithm for a specific problem at hand. Experimental results pertaining to the text categorization problem of a Portuguese corpus (wherein a translation-into-English approach is used) are presented, as well as results on the well-known benchmark IRIS dataset. The significance and other potential applications of the proposed measure are discussed.Keywords: Clustering Algorithms, Clustering Applications, Similarity Measures, Text Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731081 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.
Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531080 A New Edit Distance Method for Finding Similarity in Dna Sequence
Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin
Abstract:
The P-Bigram method is a string comparison methods base on an internal two characters-based similarity measure. The edit distance between two strings is the minimal number of elementary editing operations required to transform one string into the other. The elementary editing operations include deletion, insertion, substitution two characters. In this paper, we address the P-Bigram method to sole the similarity problem in DNA sequence. This method provided an efficient algorithm that locates all minimum operation in a string. We have been implemented algorithm and found that our program calculated that smaller distance than one string. We develop PBigram edit distance and show that edit distance or the similarity and implementation using dynamic programming. The performance of the proposed approach is evaluated using number edit and percentage similarity measures.Keywords: Edit distance, String Matching, String Similarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33181079 Similarity Measure Functions for Strategy-Based Biometrics
Authors: Roman V. Yampolskiy, Venu Govindaraju
Abstract:
Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.Keywords: Behavioral Biometrics, Euclidian Distance, Matching, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521078 Matching Current Search with Future Postings
Authors: Kim Nee Goh, Viknesh Kumar Naleyah
Abstract:
Online trading is an alternative to conventional shopping method. People trade goods which are new or pre-owned before. However, there are times when a user is not able to search the items wanted online. This is because the items may not be posted as yet, thus ending the search. Conventional search mechanism only works by searching and matching search criteria (requirement) with data available in a particular database. This research aims to match current search requirements with future postings. This would involve the time factor in the conventional search method. A Car Matching Alert System (CMAS) prototype was developed to test the matching algorithm. When a buyer-s search returns no result, the system saves the search and the buyer will be alerted if there is a match found based on future postings. The algorithm developed is useful and as it can be applied in other search context.
Keywords: Matching algorithm, online trading, search, future postings, car matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427