Search results for: Sahar S. Tabrizi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37

Search results for: Sahar S. Tabrizi

7 Cereals' Products with Red Grape and Walnut Extracts as Functional Foods for Prevention of Kidney Dysfunction

Authors: Sahar Y. Al-Okbi, Doha A. Mohamed, Thanaa E. Hamed, Ahmed Ms Hussein

Abstract:

In the present research, two nutraceuticals made from red grape and walnut that showed previously to improve kidney dysfunction were incorporated separately into functional foods' bread made from barley and rice bran. The functional foods were evaluated in rats in which chronic renal failure was induced through feeding diet rich in adenine and phosphate (APD). The evaluation based on assessing kidney function, oxidative stress, inflammatory biomarkers and body weight gain. Results showed induction of chronic kidney failure reflected in significant increase in plasma urea, creatinine, malondialdehyde, tumor necrosis factor- α and low density lipoprotein cholesterol along with significant reduction of plasma albumin, and total antioxidant and creatinine clearance and body weight gain on feeding APD compared to control healthy group. Feeding the functional foods produced amelioration in the different biochemical parameters and body weight gain indicating improvement in kidney function.

Keywords: Functional food, kidney dysfunction, rats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
6 Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite

Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae

Abstract:

Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. 20 morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.

Keywords: Bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
5 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
4 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: Cell-centered finite volume method, physical influence scheme, exponential differencing scheme, skew upwind differencing scheme, false diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
3 The Development of a Comprehensive Sustainable Supply Chain Performance Measurement Theoretical Framework in the Oil Refining Sector

Authors: Dina Tamazin, Nicoleta Tipi, Sahar Validi

Abstract:

The oil refining industry plays vital role in the world economy. Oil refining companies operate in a more complex and dynamic environment than ever before. In addition, oil refining companies and the public are becoming more conscious of crude oil scarcity and climate changes. Hence, sustainability in the oil refining industry is becoming increasingly critical to the industry's long-term viability and to the environmental sustainability. Mainly, it is relevant to the measurement and evaluation of the company's sustainable performance to support the company in understanding their performance and its implication more objectively and establishing sustainability development plans. Consequently, the oil refining companies attempt to re-engineer their supply chain to meet the sustainable goals and standards. On the other hand, this research realized that previous research in oil refining sustainable supply chain performance measurements reveals that there is a lack of studies that consider the integration of sustainability in the supply chain performance measurement practices in the oil refining industry. Therefore, there is a need for research that provides performance guidance, which can be used to measure sustainability and assist in setting sustainable goals for oil refining supply chains. Accordingly, this paper aims to present a comprehensive oil refining sustainable supply chain performance measurement theoretical framework. In development of this theoretical framework, the main characteristics of oil refining industry have been identified. For this purpose, a thorough review of relevant literature on performance measurement models and sustainable supply chain performance measurement models has been conducted. The comprehensive oil refining sustainable supply chain performance measurement theoretical framework introduced in this paper aims to assist oil refining companies in measuring and evaluating their performance from a sustainability aspect to achieve sustainable operational excellence.

Keywords: Oil refining industry, oil refining sustainable supply chain performance measurements, performance measurements, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
2 Evaluation of Bakery Products Made from Barley-Gelatinized Corn Flour and Wheat-Defatted Rice Bran Flour Composites

Authors: Ahmed M. S. Hussein, Sahar Y. Al-Okbi

Abstract:

In the present research, whole meal barley flour (WBF) was supplemented with gelatinized corn flour (GCF) in 0 and 30%. Whole meal wheat flour (WWF) was mixed with defatted rice bran (DRB) to produce 0, 20, 25, and 30% replacement levels. Rheological properties of dough were studied. Thermal properties and starch crystallinity of flours were evaluated. Flat bread, balady bread and pie were prepared from the different flour blends. The different bakeries were sensory evaluated. Color of raw materials and crust of bakery products were determined. Nutrients contents of raw flours and food products were assessed. Results showed that addition of GCF to WBF increased the viscosity and falling number of the produced dough. Water absorption, dough development time and dough stability increased with increasing the level of DRB in dough while, weakening and mixing tolerance index decreased. Extensibility and energy decreased, while, resistance to extension increased as DRB level increased. Gelatinized temperature of WWF, WBF, GCF, and DRB were 13.26, 35.09, 28.33, and 39.63, respectively. Starch crystallinity was affected when DRB was added to WWF. The highest protein content was present in balady bread made from 70% WWF and 30% DRB. The highest calcium, phosphorus, and potassium levels were present in products made from 100% WBF. Sensory attributes of the products were slightly affected by adding DRB and GCF. Conclusion: Addition of DRB or GCF to WWF or WBF, respectively affect the physical, chemical, rheological and sensory properties of balady bread, flat bread, and pie while improved their nutritive values.

Keywords: Bakeries, rheological properties, chemical and sensory attributes, flour thermal properties and starch crystallinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968