Search results for: Garivait S.
8 Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sebastien Bonnet, Poonpipope Kasemsap, Savitri Garivait
Abstract:
The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to 29% of the total soil respiration before harvesting. The root to soil respiration ratio increased rapidly during the young seedling stage, i.e. first five months, then declined and finally got stabilized during yield formation and ripening stages, respectively. In addition, the results from the measurements confirmed that soil respiration was positively correlated with soil moisture content.
Keywords: Soil respiration, root respiration, trenching experiment, sugarcane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19197 Climate Change Effect from Black Carbon Emission: Open Burning of Corn Residues in Thailand
Authors: Kanittha Kanokkanjana, Savitri Garivait
Abstract:
This study focuses on emission of black carbon (BC) from field open burning of corn residues. Real-time BC concentration was measured by Micro Aethalometer from field burning and simulated open burning in a chamber (SOC) experiments. The average concentration of BC was 1.18±0.47 mg/m3 in the field and 0.89±0.63 mg/m3 in the SOC. The deduced emission factor from field experiments was 0.50±0.20 gBC/kgdm, and 0.56±0.33 gBC/kgdm from SOC experiment, which are in good agreement with other studies. In 2007, the total burned area of corn crop was 8,000 ha, resulting in an emission load of BC 20 ton corresponding to 44.5 million kg CO2 equivalent. Therefore, the control of open burning in corn field represents a significant global warming reduction option.Keywords: Black carbon, corn field residues, global warming, mitigation option
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24956 Measurement of Greenhouse Gas Emissions from Sugarcane Plantation Soil in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Continuous measurements of greenhouse gases (GHGs) emitted from soils are required to understand diurnal and seasonal variations in soil emissions and related mechanism. This understanding plays an important role in appropriate quantification and assessment of the overall change in soil carbon flow and budget. This study proposes to monitor GHGs emissions from soil under sugarcane cultivation in Thailand. The measurements were conducted over 379 days. The results showed that the total net amount of GHGs emitted from sugarcane plantation soil amounts to 36 Mg CO2eq ha-1. Carbon dioxide (CO2) and nitrous oxide (N2O) were found to be the main contributors to the emissions. For methane (CH4), the net emission was found to be almost zero. The measurement results also confirmed that soil moisture content and GHGs emissions are positively correlated.
Keywords: Soil, GHG emission, Sugarcane, Agriculture, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24445 Carbon Storage in Above-Ground Biomass of Tropical Deciduous Forest in Ratchaburi Province, Thailand
Authors: Ubonwan Chaiyo, Savitri Garivait, Kobsak Wanthongchai
Abstract:
The study site was located in Ratchaburi Province, Thailand. Four experimental plots in dry dipterocarp forest (DDF) and four plots in mixed deciduous forest (MDF) were set up to estimate the above-ground biomass of tree, sapling and bamboo. The allometry equations were used to investigate above-ground biomass of these vegetation. Seedling and other understory were determined using direct harvesting method. Carbon storage in above-ground biomass was calculated based on IPCC 2006. The results showed that the above-ground biomass of DDF at 20-40% slope, <20% slope and MDF at <20% slope were 91.96, 30.95 and 59.44 ton/ha, respectively. Bamboo covers about half of total aboveground biomass in MDF, which is a specific characteristic of this area. The carbon sequestration potential in above-ground biomass of plot slope range 20-40% DDF, <20% DDF and <20% MDF are 43.22, 14.55 and 27.94 ton C/ha, respectively.Keywords: Carbon storage, aboveground biomass, tropical deciduous forest, dry dipterocarp forest, mixed deciduous forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29664 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.
Keywords: Soil organic carbon, Soil inorganic carbon, Carbon sequestration, Open burning, Sugarcane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33843 Estimation of Carbon Released From Dry Dipterocarp Forest Fire in Thailand
Authors: Ubonwan Chaiyo, Yannick Pizzo, Savitri Garivait
Abstract:
This study focused on the estimation of carbon released to the atmosphere from dry dipterocarp forest (DDF) fires in Thailand. Laboratory experiments were conducted using a cone calorimeter to simulate the DDF fires. The leaf litter collected from DDF in western Thailand was used as biomass fuel. Three different masses of leaf litter were employed, 7g, 10g and 13g, to estimate the carbon released from this type of vegetation fire to the atmosphere. The chemical analysis of the leaf litter showed that the carbon content in the experimental biomass fuel was 46.0±0.1%. From the experiments, it was found that more than 95% of the carbon input was converted to carbon released to the atmosphere, while less than 5% were left in the form of residues, and returned to soil. From the study, the carbon released amounted 440.213±2.243 g/kgdry biomass, and the carbon retained in the residues was 19.786±2.243 g/kgdry biomass. The quantity of biomass fuel consumed to produce 1 g of carbon released was 2.27±0.01gkgdry biomass. Using these experimental data of carbon produced by the DDF fires, it was estimated that this type of fires in 2009 contributed to 4.659 tonnes of carbon released to the atmosphere, and 0.229 tonnes of carbon in the residues to be returned to soil in Thailand.
Keywords: Carbon mass balance, carbon released, tropical dry dipterocarp forest, biomass bunring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24452 Influencing of Rice Residue Management Method on GHG Emission from Rice Cultivation
Authors: Cheewaphongphan P., Garivait S., Pongpullponsak A., Patumsawad S.
Abstract:
Thailand is one of the world-s leaders of rice producers and exporters. Farmers have to increase the rice cultivation frequency for serving the national increasing of export-s demand. It leads to an elimination of rice residues by open burning which is the quickest and costless management method. The open burning of rice residue is one of the major causes of air pollutants and greenhouse gas (GHG) emission. Under ASEAN agreement on trans-boundary haze, Thailand set the master plan to mitigate air pollutant emission from open burning of agricultural residues. In this master plan, residues incorporation is promoted as alternative management method to open burning. However, the assessment of both options in term of GHG emission in order to investigate their contribution to long-term global warming is still scarce or inexistent. In this study, a method on rice residues assessment was first developed in order to estimate and compare GHG emissions from rice cultivation under rice residues open burning and the case with incorporation of the same amount of rice residues, using 2006 IPCC guidelines for emission estimation and Life Cycle Analysis technique. The emission from rice cultivation in different preparing area practice was also discussed.Keywords: Greenhouse gases, Incorporation, Rice cultivation, Rice field residue, Rice residue management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32251 Estimation of Forest Fire Emission in Thailand by Using Remote Sensing Information
Authors: A. Junpen, S. Garivait, S. Bonnet, A. Pongpullponsak
Abstract:
The forest fires in Thailand are annual occurrence which is the cause of air pollutions. This study intended to estimate the emission from forest fire during 2005-2009 using MODerateresolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites, experimental data, and statistical data. The forest fire emission is estimated using equation established by Seiler and Crutzen in 1982. The spatial and temporal variation of forest fire emission is analyzed and displayed in the form of grid density map. From the satellite data analysis suggested between 2005 and 2009, the number of fire hotspots occurred 86,877 fire hotspots with a significant highest (more than 80% of fire hotspots) in the deciduous forest. The peak period of the forest fire is in January to May. The estimation on the emissions from forest fires during 2005 to 2009 indicated that the amount of CO, CO2, CH4, and N2O was about 3,133,845 tons, 47,610.337 tons, 204,905 tons, and 6,027 tons, respectively, or about 6,171,264 tons of CO2eq. They also emitted 256,132 tons of PM10. The year 2007 was found to be the year when the emissions were the largest. Annually, March is the period that has the maximum amount of forest fire emissions. The areas with high density of forest fire emission were the forests situated in the northern, the western, and the upper northeastern parts of the country.
Keywords: Emissions, Forest fire, Remote sensing information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194