Search results for: Recognition of Prior Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3037

Search results for: Recognition of Prior Learning

337 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
336 West African Islamic Civilization: Sokoto Caliphate and Science Education

Authors: Hassan Attahiru Gwandu

Abstract:

This study aims at surveying and analyzing the contribution of Sokoto scholars or Sokoto Caliphate in the development of science and technology in West Africa. Today, it is generally accepted that the 19th century Islamic revivalism in Hausaland was a very important revolution in the history of Hausa society and beyond. It is therefore, as a result of this movement or Jihad; the Hausaland (West Africa in general) witnessed several changes and transformations. These changes were in different sectors of life from politics, economy to social and religious aspect. It is these changes especially on religion that will be given considerations in this paper. The jihad resulted is the establishment of an Islamic state of Sokoto Caliphate, the revival Islam and development of learning and scholarship. During the existence of this Caliphate, a great deal of scholarship on Islamic laws were revived, written and documented by mostly, the three Jihad leaders; Usmanu Danfodiyo, his brother Abdullahi Fodiyo and his son Muhammad Bello. The trio had written more than one thousand books and made several verdicts on Islamic medicine. This study therefore, seeks to find out the contributions of these scholars or the Sokoto caliphate in the development of science in West Africa.

Keywords: Sokoto Caliphate, scholarship, science and technology, West Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
335 Integrated Models of Reading Comprehension: Understanding to Impact Teaching: The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aide teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: Explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190
334 Designing and Evaluating Pedagogic Conversational Agents to Teach Children

Authors: Silvia Tamayo-Moreno, Diana Pérez-Marín

Abstract:

In this paper, the possibility of children studying by using an interactive learning technology called Pedagogic Conversational Agent is presented. The main benefit is that the agent is able to adapt the dialogue to each student and to provide automatic feedback. Moreover, according to Math teachers, in many cases students are unable to solve the problems even knowing the procedure to solve them, because they do not understand what they have to do. The hypothesis is that if students are helped to understand what they have to solve, they will be able to do it. Taken that into account, we have started the development of Dr. Roland, an agent to help students understand Math problems following a User-Centered Design methodology. The use of this methodology is proposed, for the first time, to design pedagogic agents to teach any subject from Secondary down to Pre-Primary education. The reason behind proposing a methodology is that while working on this project, we noticed the lack of literature to design and evaluate agents. To cover this gap, we describe how User-Centered Design can be applied, and which usability techniques can be applied to evaluate the agent.

Keywords: Pedagogic conversational agent, human-computer interaction, user-centered design, natural language interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
333 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved VR content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or Foundation English course, which is mandatory for all first- and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and it should therefore continue being an integral part of the mandatory English course curriculum at HJU.

Keywords: Virtual Reality, smartphone, English Learning, curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
332 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
331 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
330 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: Cannibalization, machine learning, online marketplace, revenue optimization, yield optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
329 Examination of Readiness of Teachers in the Use of Information-Communication Technologies in the Classroom

Authors: Nikolina Ribarić

Abstract:

This paper compares the readiness of chemistry teachers to use information and communication technologies in chemistry in 2018 and 2021. A survey conducted in 2018 on a sample of teachers showed that most teachers occasionally use visualization and digitization tools in chemistry teaching (65%), but feel that they are not educated enough to use them (56%). Also, most teachers do not have adequate equipment in their schools and are not able to use ICT in teaching or digital tools for visualization and digitization of content (44%). None of the teachers find the use of digitization and visualization tools useless. Furthermore, a survey conducted in 2021 shows that most teachers occasionally use visualization and digitization tools in chemistry teaching (83%). Also, the research shows that some teachers still do not have adequate equipment in their schools and are not able to use ICT in chemistry teaching or digital tools for visualization and digitization of content (14%). Advances in the use of ICT in chemistry teaching are linked to pandemic conditions and the obligation to conduct online teaching. The share of 14% of teachers who still do not have adequate equipment to use digital tools in teaching is worrying.

Keywords: Chemistry, digital content, e-learning, ICT, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412
328 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information

Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee

Abstract:

This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script, which is a series of texts including directions and dialogues. The other is blogposts, which possesses relatively abstracted contents, stories, and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. When unseen words appear, it needs a method to reflect to existing topic. In this paper, we introduce a semantic vocabulary expansion method to reflect unseen words. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can discover more salient topics for broadcasting contents.

Keywords: Broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
327 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: Filler, flowability, jute fiber, nonwoven, sheet molding compound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
326 Augmenting People's Creative Idea Generation Using an Artificial Intelligent Sketching Collaborator

Authors: Joseph Maloba Makokha

Abstract:

Idea generation is an important part of the design process, and many strategies to support this stage have been developed. As artificial intelligence (AI) gains adoption in many domains, we need to understand its role, if any, in the design process. This paper introduces the concept of a “Disruptive Interjector”, an AI system that frequently interjects with suggestions based on observing what a user does. The concept emanates from a study that was conducted with pairs of humans on one hand, and human-AI pairs on the other collaborating on idea generation by sketching. Results from a study show that participants who collaborated with, and took cues from the AI sketch suggestions generated more ideas; and also had more ideas ranked by experts as “creative” compared to two humans working together on the same tasks. It is notable that while researchers from diverse fields of engineering, psychology, art and others have explored conditions and environments that enhance people's creativity - and have provided insights on creativity in general - there still exists a gap on the role that AI can play on creativity. We attempt to narrow this gap.

Keywords: Artificial intelligence, design collaboration, creativity, human-machine collaboration, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
325 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
324 Usability Testing with Children: BatiKids Case Study

Authors: Hestiasari Rante, Leonardo De Araújo, Heidi Schelhowe

Abstract:

Usability testing with children is similar in many aspects to usability testing with adults. However, there are a few differences that one needs to be aware of in order to get the most out of the sessions, and to ensure that children are comfortable and enjoying the process. This paper presents the need to acquire methodological knowledge for involving children as test users in usability testing, with consideration on Piaget’s theory of cognitive growth. As a case study, we use BatiKids, an application developed to evoke children’s enthusiasm to be involved in culture heritage preservation. The usability test was applied to 24 children from 9 to 10 years old. The children were divided into two groups; one interacted with the application through a graphic tablet with pen, and the other through touch screen. Both of the groups had to accomplish the same amount of tasks. In the end, children were asked to give feedback. The results suggested that children who interacted using the graphic tablet with pen had more difficulties rather than children who interacted through touch screen. However, the difficulty brought by the graphic tablet with pen is an important learning objective in order to understand the difficulties of using canting, which is an important part of batik.

Keywords: BatiKids, children, child-computer interaction, usability test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
323 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
322 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet

Abstract:

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
321 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data

Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto

Abstract:

This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.

Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
320 The Role of Gender and Age on Students- Perceptions towards Online Education Case Study: Sakarya University, Vocational High School

Authors: Fahme Dabaj, Havva Başak

Abstract:

The aim of this study is to find out and analyze the role of gender and age on the perceptions of students to the distant online program offered by Vocational High School in Sakarya University. The research is based on a questionnaire as a mean of data collection method to find out the role of age and gender on the student-s perceptions toward online education, and the study progressed through finding relationships between the variables used in the data collection instrument. The findings of the analysis revealed that although the students registered to the online program by will, they preferred the traditional face-to-face education due to the difficulty of the nonverbal communication, their incompetence of using the technology required, and their belief in traditional face-toface learning more than online education. Regarding gender, the results showed that the female students have a better perception of the online education as opposed to the male students. Regarding age, the results showed that the older the students are the more is their preference towards attending face-toface classes.

Keywords: Distance education, online education, interneteducation, student perceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
319 Toward a Use of Ontology to Reinforcing Semantic Classification of Message Based On LSA

Authors: S. Lgarch, M. Khalidi Idrissi, S. Bennani

Abstract:

For best collaboration, Asynchronous tools and particularly the discussion forums are the most used thanks to their flexibility in terms of time. To convey only the messages that belong to a theme of interest of the tutor in order to help him during his tutoring work, use of a tool for classification of these messages is indispensable. For this we have proposed a semantics classification tool of messages of a discussion forum that is based on LSA (Latent Semantic Analysis), which includes a thesaurus to organize the vocabulary. Benefits offered by formal ontology can overcome the insufficiencies that a thesaurus generates during its use and encourage us then to use it in our semantic classifier. In this work we propose the use of some functionalities that a OWL ontology proposes. We then explain how functionalities like “ObjectProperty", "SubClassOf" and “Datatype" property make our classification more intelligent by way of integrating new terms. New terms found are generated based on the first terms introduced by tutor and semantic relations described by OWL formalism.

Keywords: Classification of messages, collaborative communication tools, discussion forum, e-learning, formal description, latente semantic analysis, ontology, owl, semantic relations, semantic web, thesaurus, tutoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
318 The Role of Leadership and Innovation in Ecotourism Services Activity in Candirejo Village, Borobudur, Central Java, Indonesia

Authors: Iwan Nugroho, Purnawan D. Negara

Abstract:

This paper is aimed to study the roles of leadership and innovation in the development of local people based ecotourism services. The survey is conducted in Candirejo village, Borobudur District, Magelang Regency. The study of a descriptive approach is employed to identify people's behavior in ecotourism services. The results showed that ecotourism services have developed and provided benefits to the people. The roles of leadership and innovation interact positively with a cooperative to organize an ecotourism services management. The leadership is able to identify substances, to do the vision and missions of environmental and cultural conservation. The innovation provides alternative development efforts and increases the added value of ecotourism. The cooperative management was able to support a process to realize the goals of ecotourism, to build participation and communication, and to perform organizational learning. The phenomenon of the leadership in the Candirejo ecotourism enriches the studies of the ecotourism management. During this time, the ecotourism management is always associated with the standard management of national park. The ecotourism management of Candirejo is considered successful even outside the national park management.

Keywords: Borobudur, Candirejo, ecotourism, inovation, Leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978
317 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
316 Providing Medical Information in Braille: Research and Development of Automatic Braille Translation Program for Japanese “eBraille“

Authors: Aki Sugano, Mika Ohta, Mineko Ikegami, Kenji Miura, Sayo Tsukamoto, Akihiro Ichinose, Toshiko Ohshima, Eiichi Maeda, Masako Matsuura, Yutaka Takao

Abstract:

Along with the advances in medicine, providing medical information to individual patient is becoming more important. In Japan such information via Braille is hardly provided to blind and partially sighted people. Thus we are researching and developing a Web-based automatic translation program “eBraille" to translate Japanese text into Japanese Braille. First we analyzed the Japanese transcription rules to implement them on our program. We then added medical words to the dictionary of the program to improve its translation accuracy for medical text. Finally we examined the efficacy of statistical learning models (SLMs) for further increase of word segmentation accuracy in braille translation. As a result, eBraille had the highest translation accuracy in the comparison with other translation programs, improved the accuracy for medical text and is utilized to make hospital brochures in braille for outpatients and inpatients.

Keywords: Automatic Braille translation, Medical text, Partially sighted people.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
315 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology

Authors: Ines Hamdi, Mohamed Ben Ahmed

Abstract:

The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower

Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
314 Preparing Entrepreneurial Women: A Challenge for Indian Education System

Authors: Dinesh Khandujaa, Pardeep Kumar Sharma

Abstract:

Education, as the most important resource in any country, has multiplying effects on all facets of development in a society. The new social realities, particularly the interplay between democratization of education; unprecedented developments in IT sector; emergence of knowledge society, liberalization of economy and globalization have greatly influenced the educational process of all nations. This turbulence entails upon education to undergo dramatic changes to keep up with the new expectations. Growth of entrepreneurship among Indian women is highly important for empowering them and this is highly essential for socio-economic development of a society. Unfortunately in India there is poor acceptance of entrepreneurship among women as unfounded myths and fears restrain them to be enterprising. To remove these inhibitions, education system needs to be re-engineered to make entrepreneurship more acceptable. This paper empirically analyses the results of a survey done on around 500 female graduates in North India to measure and evaluate various entrepreneurial traits present in them. A formative model has been devised in this context, which should improve the teaching-learning process in our education system, which can lead to sustainable growth of women entrepreneurship in India.

Keywords: Women Empowerment, Entrepreneurship, Education System, Women Entrepreneurship, Sustainable Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
313 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
312 To Know the Way to the Unknown: A Semi-Experimental Study on the Implication of Skills and Knowledge for Creative Processes in Higher Education

Authors: Mikkel Snorre Wilms Boysen

Abstract:

From a theoretical perspective, expertise is generally considered a precondition for creativity. The assumption is that an individual needs to master the common and accepted rules and techniques within a certain knowledge-domain in order to create something new and valuable. However, real life cases, and a limited amount of empirical studies, demonstrate that this assumption may be overly simple. In this article, this question is explored through a number of semi-experimental case studies conducted within the fields of music, technology, and youth culture. The studies indicate that, in various ways, expertise plays an important part in creative processes. However, the case studies also indicate that expertise sometimes leads to an entrenched perspective, in the sense that knowledge and experience may work as a path into the well-known rather than into the unknown. In this article, these issues are explored with reference to different theoretical approaches to creativity and learning, including actor-network theory, the theory of blind variation and selective retention, and Csikszentmihalyi’s system model. Finally, some educational aspects and implications of this are discussed.

Keywords: Creativity, education, expertise, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
311 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
310 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
309 The Role of Planning and Memory in the Navigational Ability

Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal

Abstract:

Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.

Keywords: Memory, planning navigational ability, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
308 Inter-Organizational Knowledge Transfer Through Malaysia E-government IT Outsourcing: A Theoretical Review

Authors: Nor Aziati Abdul Hamid, Juhana Salim

Abstract:

The main objective of this paper is to contribute the existing knowledge transfer and IT Outsourcing literature specifically in the context of Malaysia by reviewing the current practices of e-government IT outsourcing in Malaysia including the issues and challenges faced by the public agencies in transferring the knowledge during the engagement. This paper discusses various factors and different theoretical model of knowledge transfer starting from the traditional model to the recent model suggested by the scholars. The present paper attempts to align organizational knowledge from the knowledge-based view (KBV) and organizational learning (OL) lens. This review could help shape the direction of both future theoretical and empirical studies on inter-firm knowledge transfer specifically on how KBV and OL perspectives could play significant role in explaining the complex relationships between the client and vendor in inter-firm knowledge transfer and the role of organizational management information system and Transactive Memory System (TMS) to facilitate the organizational knowledge transferring process. Conclusion is drawn and further research is suggested.

Keywords: E-government, IT Outsourcing, Knowledge Management, Knowledge Transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368