Search results for: Modified Cross Correlation
208 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.
Keywords: Biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625207 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy is crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. Although there exists a number of open-source software tools and artificial intelligence (AI) methods designed for analyzing mitochondrial images, the availability of only a few combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compactibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source Python and OpenCV library, the algorithms are implemented in three stages: pre-processing; image binarization; and coarse-to-fine segmentation. The proposed model is validated using the fluorescence mitochondrial dataset. Ground truth labels generated using Labkit were also used to evaluate the performance of our detection and segmentation model using precision, recall and rand index. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks concludes the paper.
Keywords: 2D, Binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482206 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293205 Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault
Authors: V. S. Meenakshi, G. Padmavathi
Abstract:
Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.Keywords: Biometric Template Security, Crypto Biometric Systems, Hardening Fuzzy Vault, Min-Entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161204 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities
Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob
Abstract:
Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.
Keywords: BIM, building fire response, ranking, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553203 Changes of Poultry Meat Chemical Composition, in Relationship with Lighting Schedule
Authors: P. C. Boisteanu, M. G. Usturoi, Roxana Lazar, B. V. Avarvarei
Abstract:
The paper is included within the framework of a complex research program, which was initiated from the hypothesis arguing on the existence of a correlation between pineal indolic and peptide hormones and the somatic development rhythm, including thus the epithalamium-epiphysis complex involvement. At birds, pineal gland contains a circadian oscillator, playing a main role in the temporal organization of the cerebral functions. The secretion of pineal indolic hormones is characterized by a high endogenous rhythmic alternation, modulated by the light/darkness (L/D) succession and by temperature as well. The research has been carried out using 100 chicken broilers - “Ross" commercial hybrid, randomly allocated in two experimental batches: Lc batch, reared under a 12L/12D lighting schedule and Lexp batch, which was photic pinealectomised through continuous exposition to light (150 lux, 24 hours, 56 days). Chemical and physical features of the meat issued from breast fillet and thighs muscles have been studied, determining the dry matter, proteins, fat, collagen, salt content and pH value, as well. Besides the variations of meat chemical composition in relation with lighting schedule, other parameters have been studied: live weight dynamics, feed intake and somatic development degree. The achieved results became significant since chickens have 7 days of age, some variations of the studied parameters being registered, revealing that the pineal gland physiologic activity, in relation with the lighting schedule, could be interpreted through the monitoring of the somatic development technological parameters, usually studied within the chicken broilers rearing aviculture practice.Keywords: lighting schedule, physic-chemical characteristics ofmeat, pineal gland at birds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584202 Household Food Insecurity and Associated Coping Strategies in Urban, Peri-Urban and Rural Settings: A Case of Morogoro and Iringa Towns, Tanzania
Authors: U. Tumaini, J. Msuya
Abstract:
Food insecurity is a worrying challenge worldwide with sub-Saharan Africa including Tanzania being the most affected. Although factors that influence household food access security status and ways of coping with such factors have been examined, little has been reported on how these coping strategies vary along the urban-rural continuum especially in medium-sized towns. The purpose of this study was to identify food insecurity coping strategies employed by households and assess whether they are similar along the urban-rural continuum. The study was cross-sectional in design whereby a random sample of 279 households was interviewed using structured questionnaire. Data were analysed using Statistical Package for Social Sciences (SPSS) Version 20 software. It was revealed that the proportion of households relying on less preferred and quality foods, eating fewer meals per day, undertaking work for food or money, performing farm and off-farm activities, and selling fall back assets was higher in rural settings compared to urban and peri-urban areas. Similarly, more households in urban and peri-urban areas cope with food access insecurity by having strict food budgets compared to those in rural households (p ≤ 0.001). The study concludes that food insecurity coping strategies vary significantly from one spatial entity to another. It is thereby recommended that poor, particularly rural households should be supported to diversify their income-generating activities not only for food security purposes during times of food shortage but also as businesses aimed at increasing their household incomes.
Keywords: Food coping strategies, household food insecurity, medium-sized towns, urban-rural continuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904201 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System
Authors: P. K. Sarkar, Amit Kumar Jain
Abstract:
The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.Keywords: Congestion, differential pricing, elasticity, transport demand management, urban transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691200 An Exploration of Cross-Cultural Behaviour: The Characteristics of Chinese Consumers’ Decision Making in Europe
Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu
Abstract:
This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted 24 in-depth interviews. Grounded theory models are developed to link the causal conditions, process, and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.
Keywords: National culture, consumer behaviour, cultural marketing, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494199 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction
Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal
Abstract:
The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.Keywords: Acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977198 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications
Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik
Abstract:
Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).
Keywords: Polymer treatment, laser, periodic pattern, cell response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787197 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.
Keywords: Computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779196 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant
Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov
Abstract:
Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.
Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688195 Modelling Forest Fire Risk in the Goaso Forest Area of Ghana: Remote Sensing and Geographic Information Systems Approach
Authors: Bernard Kumi-Boateng, Issaka Yakubu
Abstract:
Forest fire, which is, an uncontrolled fire occurring in nature has become a major concern for the Forestry Commission of Ghana (FCG). The forest fires in Ghana usually result in massive destruction and take a long time for the firefighting crews to gain control over the situation. In order to assess the effect of forest fire at local scale, it is important to consider the role fire plays in vegetation composition, biodiversity, soil erosion, and the hydrological cycle. The occurrence, frequency and behaviour of forest fires vary over time and space, primarily as a result of the complicated influences of changes in land use, vegetation composition, fire suppression efforts, and other indigenous factors. One of the forest zones in Ghana with a high level of vegetation stress is the Goaso forest area. The area has experienced changes in its traditional land use such as hunting, charcoal production, inefficient logging practices and rural abandonment patterns. These factors which were identified as major causes of forest fire, have recently modified the incidence of fire in the Goaso area. In spite of the incidence of forest fires in the Goaso forest area, most of the forest services do not provide a cartographic representation of the burned areas. This has resulted in significant amount of information being required by the firefighting unit of the FCG to understand fire risk factors and its spatial effects. This study uses Remote Sensing and Geographic Information System techniques to develop a fire risk hazard model using the Goaso Forest Area (GFA) as a case study. From the results of the study, natural forest, agricultural lands and plantation cover types were identified as the major fuel contributing loads. However, water bodies, roads and settlements were identified as minor fuel contributing loads. Based on the major and minor fuel contributing loads, a forest fire risk hazard model with a reasonable accuracy has been developed for the GFA to assist decision making.
Keywords: Forest risk, GIS, remote sensing, Goaso.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007194 Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images
Authors: Dr. H. B. Kekre, Sudeep D. Thepade
Abstract:
Panoramic view generation has always offered novel and distinct challenges in the field of image processing. Panoramic view generation is nothing but construction of bigger view mosaic image from set of partial images of the desired view. The paper presents a solution to one of the problems of image seascape formation where some of the partial images are color and others are grayscale. The simplest solution could be to convert all image parts into grayscale images and fusing them to get grayscale image panorama. But in the multihued world, obtaining the colored seascape will always be preferred. This could be achieved by picking colors from the color parts and squirting them in grayscale parts of the seascape. So firstly the grayscale image parts should be colored with help of color image parts and then these parts should be fused to construct the seascape image. The problem of coloring grayscale images has no exact solution. In the proposed technique of panoramic view generation, the job of transferring color traits from reference color image to grayscale image is done by palette based method. In this technique, the color palette is prepared using pixel windows of some degrees taken from color image parts. Then the grayscale image part is divided into pixel windows with same degrees. For every window of grayscale image part the palette is searched and equivalent color values are found, which could be used to color grayscale window. For palette preparation we have used RGB color space and Kekre-s LUV color space. Kekre-s LUV color space gives better quality of coloring. The searching time through color palette is improved over the exhaustive search using Kekre-s fast search technique. After coloring the grayscale image pieces the next job is fusion of all these pieces to obtain panoramic view. For similarity estimation between partial images correlation coefficient is used.Keywords: Panoramic View, Similarity Estimate, Color Transfer, Color Palette, Kekre's Fast Search, Kekre's LUV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756193 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579192 Grassland Phenology in Different Eco-Geographic Regions over the Tibetan Plateau
Authors: Jiahua Zhang, Qing Chang, Fengmei Yao
Abstract:
Studying on the response of vegetation phenology to climate change at different temporal and spatial scales is important for understanding and predicting future terrestrial ecosystem dynamics and the adaptation of ecosystems to global change. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset and climate data were used to analyze the dynamics of grassland phenology as well as their correlation with climatic factors in different eco-geographic regions and elevation units across the Tibetan Plateau. The results showed that during 2003–2012, the start of the grassland greening season (SOS) appeared later while the end of the growing season (EOS) appeared earlier following the plateau’s precipitation and heat gradients from southeast to northwest. The multi-year mean value of SOS showed differences between various eco-geographic regions and was significantly impacted by average elevation and regional average precipitation during spring. Regional mean differences for EOS were mainly regulated by mean temperature during autumn. Changes in trends of SOS in the central and eastern eco-geographic regions were coupled to the mean temperature during spring, advancing by about 7d/°C. However, in the two southwestern eco-geographic regions, SOS was delayed significantly due to the impact of spring precipitation. The results also showed that the SOS occurred later with increasing elevation, as expected, with a delay rate of 0.66 d/100m. For 2003–2012, SOS showed an advancing trend in low-elevation areas, but a delayed trend in high-elevation areas, while EOS was delayed in low-elevation areas, but advanced in high-elevation areas. Grassland SOS and EOS changes may be influenced by a variety of other environmental factors in each eco-geographic region.Keywords: Grassland, phenology, MODIS, eco-geographic regions, elevation, climatic factors, Tibetan Plateau.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833191 Consequential Influences of Work-Induced Emotions on the Work-Induced Happiness of Frontline Workers in Finance-Oriented Firms
Authors: Mohammed-Aminu Sanda, Emmanuel K. Mawuena
Abstract:
Frontline workers performing client service duties in finance-oriented firms in most sub-Saharan African countries, such as Ghana, are known to be challenged in the conduct of their activities. The challenge is attributed to clients’ continued demand for real-time services from such workers, despite the introduction of technological interventions to offset the situation. This has caused such frontline workers to experience increases in their work-induced emotions with consequential effects on their work-induced happiness. This study, therefore, explored the effect of frontline workers’ work-induced emotions on their worked-induced happiness when providing tellering services to clients. A cross-sectional design and quantitative technique were used. Data were collected from a sample of 280 frontline workers using questionnaire. Based on the analysis, it was found that an increase in the frontline workers’ work-induced emotions, caused by their feelings of strain, burnout, frustration, and hard work, had consequential effect on their work-induced happiness. This consequential effect was also found to be aggravated by the workers’ senses of being stretched beyond limit, being emotionally drained, and being used up by their work activities. It is concluded that frontline workers in finance-oriented firms can provide quality real-time services to clients without increases in their work-induced emotions, but with enhanced work-induced happiness, when the psychological and physiological emotional factors associated with the challenged work activities are understood and remedied. Management of the firms can use such understanding to redesign the activities of their frontline workers and improve the quality of their service delivery interactivity with clients.
Keywords: Client-service activity, finance industrial sector, frontline workers, work-induced emotion, work-induced happiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771190 Characterization of an Acetobacter Strain Isolated from Iranian Peach that Tolerates High Temperatures and Ethanol Concentrations
Authors: K. Beheshti Maal, R. Shafiee
Abstract:
Vinegar is a precious food additive and complement as well as effective preservative against food spoilage. Recently traditional vinegar production has been improved using various natural substrates and fruits such as grape, palm, cherry, coconut, date, sugarcane, rice and balsam. These neoclassical fermentations resulted in several vinegar types with different tastes, fragrances and nutritional values because of applying various acetic acid bacteria as starters. Acetic acid bacteria include genera Acetobacter, Gluconacetobacter and Gluconobacter according to latest edition of Bergy-s Manual of Systematic Bacteriology that classifies genera on the basis of their 16s RNA differences. Acetobacter spp as the main vinegar starters belong to family Acetobacteraceae that are gram negative obligate aerobes, chemoorganotrophic bacilli that are oxidase negative and oxidize ethanol to acetic acid. In this research we isolated and identified a native Acetobacter strain with high acetic acid productivity and tolerance against high ethanol concentrations from Iranian peach as a summer delicious fruit that is very susceptible to food spoilage and decay. We used selective and specific laboratorial culture media such as Standard GYC, Frateur and Carr medium. Also we used a new industrial culture medium and a miniature fermentor with a new aeration system innovated by Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The isolated strain was successfully cultivated in modified Carr media with 2.5% and 5% ethanol simultaneously in high temperatures, 34 - 40º C after 96 hours of incubation period. We showed that the increase of ethanol concentration resulted in rising of strain sensitivity to high temperature. In conclusion we isolated and characterized a new Acetobacter strain from Iranian peach that could be considered as a potential strain for production of a new vinegar type, peach vinegar, with a delicious taste and advantageous nutritional value in food biotechnology and industrial microbiology.
Keywords: Acetobacter, Acetic Acid Bacteria, Vinegar, Peach, Food Biotechnology, Industrial Microbiology, Fermentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888189 Health Hazards among Healthcare Workers and Associated Factors in Public Hospitals, Sana'a-Yemen
Authors: Makkia, Ahmad, Al-Falahi, Abdullah Abdelaziz Muharram
Abstract:
Healthcare workers (HCWs) in Yemen are exposed to a myriad of occupational health hazards, including biological, physical, ergonomic, chemical and psychosocial hazards. HCWs operate in an environment that is considered to be one of the most hazardous occupational settings. The current study aimed to assess sng the prevalence of occupational health hazards among Health care workers and associated risk factors in public hospitals in Sana'a City, Yemen. Descriptive cross-sectional design was utilized; out of 5443 totals of HCWs 396 were selected by multistage sampling technique was carried out in the public hospitals in Sana'a city, Yemen. More the half (60.6%) of HCWs were aged between 20-30 years, 50.8% were males, 56.3% were married, and 45.5% had a diploma qualification, while 65.2% of HCWs had less than 6 years of experience. The results show a high prevalence of occupational hazards (99%); ergonomic hazards (93.4%), biological hazards (87.6%), psychosocial (86.65%), physical hazards (83.3%), and chemical hazards (73.5%). There were no statistically significant differences between demographic characteristics and the prevalence of occupational hazards (p > 0.05). The study revealed that occupational hazards were highly prevalent among the participants. The most common biological hazard was exposure to sharp-related injuries, while the predominant physical hazard was slip, trip, and fall incidents. Ergonomic hazards manifested as back or neck pain during work. Chemical hazards were represented by allergic reactions to medical gloves powder. Psychosocial hazards included experiencing verbal and physical harassment. In conclusion, the study emphasized the importance of raising awareness among HCWs and conducting training courses to prevent occupational hazards.
Keywords: Health workers, occupational hazard, prevalence, risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159188 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271187 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana
Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu
Abstract:
Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.
Keywords: Sickle cell disease, quality of life, anxiety, depression, socio-demographic characteristics, Ghana.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830186 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559185 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia
Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden
Abstract:
The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.
Keywords: Decarbonization, energy system modeling, sector coupling, variable renewable energies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602184 Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia
Authors: N. A. Samat, S. H. Mohd Imam Ma’arof
Abstract:
Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.
Keywords: Dengue disease, Disease mapping, Standardized Morbidity Ratio, Poisson-gamma model, Relative risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298183 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.
Keywords: Deep learning, data mining, gender predication, MOOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371182 The Impact of Culture on Tourists’ Evaluation of Hotel Service Experiences
Authors: Eid Alotaibi
Abstract:
The purpose of this study is to investigate the impact of tourists’ culture on perception and evaluation of hotel service experience and behavioral intentions. Drawing on Hofested’s cultural dimensions, this study seeks to further contribute towards understanding the effect of culture on perception and evaluation of hotels’ services, and whether there are differences between Saudi and European tourists’ perceptions of hotel services evaluation. A descriptive cross-sectional design was used in this study. Data were collected from tourists staying in five-star hotels in Saudi Arabia using the self-completion technique. The findings show that evaluations of hotel services differ from one culture to another. T-test results reveal that Saudis were more tolerant and reported significantly higher levels of satisfaction, were more likely to return and recommend the hotel, and perceived the price for the hotel stay as being good value for money as compared to their European counterparts. The sample was relatively small and specific to only five-star hotel evaluations. As a result, findings cannot be generalized to the wider tourist population. The results of this research have important implications for management within the Saudi hospitality industry. The study contributes to the tourist cultural theory by emphasizing the relative importance of cultural dimensions in-service evaluation. The author argues that no studies could be identified that compare Saudis and Europeans in their evaluations of their experiences staying at hotels. Therefore, the current study would enhance understanding of the effects of cultural factors on service evaluations and provide valuable input for international market segmentation and resource allocation in the Saudi hotel industry.
Keywords: Culture, tourist, service experience, hotel industry, Hofested’s cultural dimensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103181 Pyrethroid Resistance and Its Mechanism in Field Populations of the Sand Termite, Psammotermes hypostoma Desneux
Authors: Mai. M. Toughan, Ahmed A. A. Sallam, Ashraf O. Abd El-Latif
Abstract:
Termites are eusocial insects that are found on all continents except Antarctica. Termites have serious destructive impact, damaging local huts and crops of poor subsistence. The annual cost of termite damage and its control is determined in the billions globally. In Egypt, most of these damages are due to the subterranean termite species especially the sand termite, P. hypostoma. Pyrethroids became the primary weapon for subterranean termite control, after the use of chlorpyrifos as a soil termiticide was banned. Despite the important role of pyrethroids in termite control, its extensive use in pest control led to the eventual rise of insecticide resistance which may make many of the pyrethroids ineffective. The ability to diagnose the precise mechanism of pyrethroid resistance in any insect species would be the key component of its management at specified location for a specific population. In the present study, detailed toxicological and biochemical studies was conducted on the mechanism of pyrethroid resistance in P. hypostoma. The susceptibility of field populations of P. hypostoma against deltamethrin, α-cypermethrin and ƛ-cyhalothrin was evaluated. The obtained results revealed that the workers of P. hypostoma have developed high resistance level against the tested pyrethroids. Studies carried out through estimation of detoxification enzyme activity indicated that enhanced esterase and cytochrome P450 activities were probably important mechanisms for pyrethroid resistance in field populations. Elevated esterase activity and also additional esterase isozyme were observed in the pyrethroid-resistant populations compared to the susceptible populations. Strong positive correlation between cytochrome P450 activity and pyrethroid resistance was also reported. |Deltamethrin could be recommended as a resistance-breaking pyrethroid that is active against resistant populations of P. hypostoma.
Keywords: Psammotermes hypostoma, pyrethroid resistance, esterase, cytochrome P450.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818180 Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars
Authors: Khaled S. Ragab, Ahmed S. Eisa
Abstract:
This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3
Keywords: Self compacting concrete, torsion behavior, steel fiber, steel fiber reinforced high strength self compacting concrete (SFRHSCC), GFRP bars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364179 Perceptions and Attitudes towards Infant-s Physical Health and Caring: Immigrants and Native Born Mothers
Authors: Orly Sarid, Yana Shraga
Abstract:
Purpose: To compare attitudes and perceptions of Israeli native born mothers versus former Soviet Union (FSU) immigrant mothers regarding the physical health of their infant. Methodology: cross-sectional design. A convenience sample of 50 participants was recruited by face to face and snowball technique. A questionnaire was constructed according to the instructions of the Ministry of Health for the care and treatment of infants. The main areas explored were: sources of knowledge that the young mother acquired regarding the care of her infant, ways of caring for the infant, hygiene and sanitary habits, and the pattern of referral to health professionals. The last topic relates to emotions mothers might experience towards their infant. Results: Mothers from both cultural groups present some similar caring behaviors, which may express a universal aspect of mothers' behavior towards their infants. However, immigrant mothers differ significantly from native born by relying less on their mothers' and grandmothers' experience, they wean their infants from diapers earlier, they are stricter about hygiene and sanitary habits and they tend to consult a physician when their infant has low fever. Native born and immigrant mothers differ in their expressions of pride and wonder. Immigrant mothers report of a lesser degree of these emotions towards their infants than native born mothers. Conclusion: The theoretical model of socialization and acculturation of immigrant mothers is employed as an explanatory model for the current findings Young immigrant mothers undergo a complex acculturation process and adapt behavioral patterns in various areas to comply with Israeli norms and values, demonstrating assimilation. In other areas they adhere to the norms of their original culture.Keywords: Attitudes, immigrant mothers, infant, physical health
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425