Search results for: Multi criteria inventory classification models
3263 Clustered Signatures for Modeling and Recognizing 3D Rigid Objects
Authors: H. B. Darbandi, M. R. Ito, J. Little
Abstract:
This paper describes a probabilistic method for three-dimensional object recognition using a shared pool of surface signatures. This technique uses flatness, orientation, and convexity signatures that encode the surface of a free-form object into three discriminative vectors, and then creates a shared pool of data by clustering the signatures using a distance function. This method applies the Bayes-s rule for recognition process, and it is extensible to a large collection of three-dimensional objects.Keywords: Object recognition, modeling, classification, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12783262 Monetary Evaluation of Dispatching Decisions in Consideration of Mode Choice Models
Authors: Marcel Schneider, Nils Nießen
Abstract:
Microscopic simulation tool kits allow for consideration of the two processes of railway operations and the previous timetable production. Block occupation conflicts on both process levels are often solved by using defined train priorities. These conflict resolutions (dispatching decisions) generate reactionary delays to the involved trains. The sum of reactionary delays is commonly used to evaluate the quality of railway operations, which describes the timetable robustness. It is either compared to an acceptable train performance or the delays are appraised economically by linear monetary functions. It is impossible to adequately evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for the evaluation of dispatching decisions. The approach uses mode choice models and considers the behaviour of the end-customers. These models evaluate the reactionary delays in more detail and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operations with the macroscopic choice mode model. At first, it will be implemented for railway operations process but it can also be used for timetable production. The evaluation considers the possibility for the customer to interchange to other transport modes. The new approach starts to look at rail and road, but it can also be extended to air travel. The result of mode choice models is the modal split. The reactions by the end-customers have an impact on the revenue of the train operating companies. Different purposes of travel have different payment reserves and tolerances towards late running. Aside from changes to revenues, longer journey times can also generate additional costs. The costs are either time- or track-specific and arise from required changes to rolling stock or train crew cycles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of delays. The contribution margin is calculated for different possible solutions to the same conflict. The conflict resolution is optimised until the monetary loss becomes minimal. The iterative process therefore determines an optimum conflict resolution by monitoring the change to the contribution margin. Furthermore, a monetary value of each dispatching decision can also be derived.Keywords: Choice of mode, monetary evaluation, railway operations, reactionary delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14823261 Assessment of Landslide Volume for Alishan Highway Based On Database of Rainfall-Induced Slope Failure
Authors: Yun-Yao Chi, Ya-Fen Lee
Abstract:
In this paper, a study of slope failures along the Alishan Highway is carried out. An innovative empirical model is developed based on 15-year records of rainfall-induced slope failures. The statistical models are intended for assessing the volume of landslide for slope failure along the Alishan Highway in the future. The rainfall data considered in the proposed models include the effective cumulative rainfall and the critical rainfall intensity. The effective cumulative rainfall is defined at the point when the curve of cumulative rainfall goes from steep to flat. Then, the rainfall thresholds of landslide are established for assessing the volume of landslide and issuing warning and/or closure for the Alishan Highway during a future extreme rainfall. Slope failures during Typhoon Saola in 2012 demonstrate that the new empirical model is effective and applicable to other cases with similar rainfall conditions.
Keywords: Slope failure, landslide, volume, model, rainfall thresholds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17723260 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease
Authors: Elizabeth Stojanovski
Abstract:
Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.
Keywords: Random-effects, meta-analysis, Bayesian, variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6593259 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting
Authors: Analise Borg, Paul Micallef
Abstract:
Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organise the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that nonparametric analysis offer potential results as the ones mentioned in the literature.
Keywords: Audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22853258 The Association of Vitamin B₁₂ with Body Weight-and Fat-Based Indices in Childhood Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Vitamin deficiencies are common in obese individuals. Particularly, the status of vitamin B12 and its association with vitamin B9 (folate) and vitamin D is under investigation in recent time. Vitamin B12 is closely related to many vital processes in the body. In clinical studies, its involvement in fat metabolism draws attention from the obesity point of view. Obesity, in its advanced stages and in combination with metabolic syndrome (MetS) findings, may be a life-threatening health problem. Pediatric obesity is particularly important, because it may be a predictor of the severe chronic diseases during adulthood period of the child. Due to its role in fat metabolism, vitamin B12 deficiency may disrupt metabolic pathways of the lipid and energy metabolisms in the body. The association of low B12 levels with obesity degree may be an interesting topic to be investigated. Obesity indices may be helpful at this point. Weight- and fat-based indices are available. Of them, body mass index (BMI) is in the first group. Fat mass index (FMI), fat-free mass index (FFMI) and diagnostic obesity notation model assessment-II (D2I) index lie in the latter group. The aim of this study is to clarify possible associations between vitamin B12 status and obesity indices in pediatric population. The study comprises a total of 122 children. 32 children were included in the normal-body mass index (N-BMI) group. 46 and 44 children constitute groups with morbid obese children without MetS and with MetS, respectively. Informed consent forms and the approval of the institutional ethics committee were obtained. Tables prepared for obesity classification by World Health Organization were used. MetS criteria were defined. Anthropometric and blood pressure measurements were taken. BMI, FMI, FFMI, D2I were calculated. Routine laboratory tests were performed. Vitamin B9, B12, D concentrations were determined. Statistical evaluation of the study data was performed. Vitamin B9 and vitamin D levels were reduced in MetS group compared to children with N-BMI (p > 0.05). Significantly lower values were observed in vitamin B12 concentrations of MetS group (p < 0.01). Upon evaluation of blood pressure as well as triglyceride levels, there exist significant increases in morbid obese children. Significantly decreased concentrations of high-density lipoprotein cholesterol were observed. All of the obesity indices and insulin resistance index exhibit increasing tendency with the severity of obesity. Inverse correlations were calculated between vitamin D and insulin resistance index as well as vitamin B12 and D2I in morbid obese groups. In conclusion, a fat-based index, D2I, was the most prominent body index, which shows strong correlation with vitamin B12 concentrations in the late stage of obesity in children. A negative correlation between these two parameters was a confirmative finding related to the association between vitamin B12 and obesity degree.
Keywords: Body mass index, children, D2I index, fat mass index, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7113257 Nonoscillation Criteria for Nonlinear Delay Dynamic Systems on Time Scales
Authors: Xinli Zhang
Abstract:
In this paper, we consider the nonlinear delay dynamic system xΔ(t) = p(t)f1(y(t)), yΔ(t) = −q(t)f2(x(t − τ )). We obtain some necessary and sufficient conditions for the existence of nonoscillatory solutions with special asymptotic properties of the system. We generalize the known results in the literature. One example is given to illustrate the results.
Keywords: Dynamic system, oscillation, time scales, two-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12933256 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette
Authors: M.K. Bhuyan, Aragala Jagan.
Abstract:
Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19113255 Improving Order Quantity Model with Emergency Safety Stock (ESS)
Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver
Abstract:
This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.
Keywords: Emergency Safety Stocks, Safety stocks, Order Quantity Model, Supply chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28693254 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models
Authors: Y. Bhatt, N. Ghosh, N. Tiwari
Abstract:
Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.
Keywords: Acreage response function, biofuel, food security, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14153253 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.
Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2873252 A Modular On-line Profit Sharing Approach in Multiagent Domains
Authors: Pucheng Zhou, Bingrong Hong
Abstract:
How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14463251 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM
Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad
Abstract:
A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19293250 Energy Loss at Drops using Neuro Solutions
Authors: Farzin Salmasi
Abstract:
Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443249 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump
Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim
Abstract:
Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.
Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16463248 Discovery and Capture of Organizational Knowledge from Unstructured Information
Authors: J. Gu, W.B. Lee, C.F. Cheung, E. Tsui, W.M. Wang
Abstract:
Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.Keywords: Knowledge-Based System, Knowledge Elicitation, Knowledge Management, Taxonomy, Unstructured Information Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18413247 Evaluating the Standards of Hospital Pharmacies in Therapeutic Centers Affiliated with Kermanshah University of Medical Sciences, Iran
Authors: Tahvilian R., Siahi Shadbad MR., Hamishehkar H., Aghababa Gharehbagh V.
Abstract:
Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate quality of hospital drugstores affiliated with Kermanshah University of Medical Sciences. In this cross-sectional study a validated questionnaire was used. The questionnaire was filled in by the one of the researchers in all seventeen hospital drugstores located in the teaching and nonteaching hospitals affiliated with Kermanshah University of Medical Sciences. The results shows that in observed hospitals,24% of pharmacy environments, 25% of pharmacy store and storage conditions, 49% of storage procedure, 25% of ordering drugs and supplies, 73% of receiving supplies (proper procedure are fallowed for receiving supplies), 35% of receiving supplies (prompt action taken if deterioration of drugs received is suspected), 23.35% of drugs delivery to patients and finally 0% of stock cards are used for proper inventory control have full compliance with standards.Keywords: Hospital pharmacy standards, Kermanshah, pharmacy management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18543246 An EOQ Model for Non-Instantaneous Deteriorating Items with Power Demand, Time Dependent Holding Cost, Partial Backlogging and Permissible Delay in Payments
Authors: M. Palanivel, R. Uthayakumar
Abstract:
In this paper, Economic Order Quantity (EOQ) based model for non-instantaneous Weibull distribution deteriorating items with power demand pattern is presented. In this model, the holding cost per unit of the item per unit time is assumed to be an increasing linear function of time spent in storage. Here the retailer is allowed a trade-credit offer by the supplier to buy more items. Also in this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This model aids in minimizing the total inventory cost by finding the optimal time interval and finding the optimal order quantity. The optimal solution of the model is illustrated with the help of numerical examples. Finally sensitivity analysis and graphical representations are given to demonstrate the model.
Keywords: Power demand pattern, Partial backlogging, Time dependent holding cost, Trade credit, Weibull deterioration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30843245 A Cost Optimization Model for the Construction of Bored Piles
Authors: Kenneth M. Oba
Abstract:
Adequate management, control, and optimization of cost is an essential element for a successful construction project. A multiple linear regression optimization model was formulated to address the problem of costs associated with pile construction operations. A total of 32 PVC-reinforced concrete piles with diameter of 300 mm, 5.4 m long, were studied during the construction. The soil upon which the piles were installed was mostly silty sand, and completely submerged in water at Bonny, Nigeria. The piles are friction piles installed by boring method, using a piling auger. The volumes of soil removed, the weight of reinforcement cage installed, and volumes of fresh concrete poured into the PVC void were determined. The cost of constructing each pile based on the calculated quantities was determined. A model was derived and subjected to statistical tests using Statistical Package for the Social Sciences (SPSS) software. The model turned out to be adequate, fit, and have a high predictive accuracy with an R2 value of 0.833.
Keywords: Cost optimization modelling, multiple linear models, pile construction, regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783244 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop
Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy
Abstract:
In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36973243 Greenhouse Micro Climate Monitoring Based On WSN with Smart Irrigation Technique
Authors: Mahmoud Shaker, Ala'a Imran
Abstract:
Greenhouse is a building, which provides controlled climate conditions to the plants to keep them from external hard conditions. Greenhouse technology gives freedom to the farmer to select any crop type in any time during year. The quality and productivity of plants inside greenhouse is highly dependent on the management quality and a good management scheme is defined by the quality of the information collected from the greenhouse environment. Therefore, Continuous monitoring of environmental variables such as temperature, humidity, and soil moisture gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness. In this piper, we designed and implemented climate monitoring with irrigation control system based on Wireless Sensor Network (WSN) technology. The designed system is characterized with friendly to use, easy to install by any greenhouse user, multi-sensing nodes, multi-PAN ID, low cast, water irrigation control and low operation complexity. The system consists of two node types (sensing and control) with star topology on one PAN ID. Moreover, greenhouse manager can modifying system parameters such as (sensing node addresses, irrigation upper and lower control limits) by updating corresponding data in SDRAM memory. In addition, the designed system uses 2*16 characters. LCD to display the micro climate parameters values of each plants row inside the greenhouse.
Keywords: ZigBee, WSN, Arduino platform, Greenhouse automation, micro climate monitoring, smart Irrigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51633242 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach
Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang
Abstract:
A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14353241 UPPAAL-Based Design and Analysis of Intelligent Parking System
Authors: Abobaker M. Q. Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.
Keywords: Preliminaries, system requirements, timed automata, uppaal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443240 Constructing of Classifier for Face Recognition on the Basis of the Conjugation Indexes
Authors: Vladimir A. Fursov, Nikita E. Kozin
Abstract:
In this work the opportunity of construction of the qualifiers for face-recognition systems based on conjugation criteria is investigated. The linkage between the bipartite conjugation, the conjugation with a subspace and the conjugation with the null-space is shown. The unified solving rule is investigated. It makes the decision on the rating of face to a class considering the linkage between conjugation values. The described recognition method can be successfully applied to the distributed systems of video control and video observation.Keywords: Conjugation, Eigenfaces, Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14673239 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.
Keywords: Direct steam generation, parabolic trough collectors, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7903238 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.
Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043237 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31903236 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran
Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid
Abstract:
Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.Keywords: Soil organic carbon, modeling, neural networks, CDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14353235 Realization of Design Features for Linear Flow Splitting in NX 6
Authors: Anselm L. Schüle, Thomas Rollmann, Reiner Anderl
Abstract:
Within the collaborative research center 666 a new product development approach and the innovative manufacturing method of linear flow splitting are being developed. So far the design process is supported by 3D-CAD models utilizing User Defined Features in standard CAD-Systems. This paper now presents new functions for generating 3D-models of integral sheet metal products with bifurcations using Siemens PLM NX 6. The emphasis is placed on design and semi-automated insertion of User Defined Features. Therefore User Defined Features for both, linear flow splitting and its derivative linear bend splitting, were developed. In order to facilitate the modeling process, an application was developed that guides through the insertion process. Its usability and dialog layout adapt known standard features. The work presented here has significant implications on the quality, accurateness and efficiency of the product generation process of sheet metal products with higher order bifurcations.Keywords: Linear Flow Splitting, CRC 666, User Defined Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24813234 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off
Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh
Abstract:
Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.
Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136