Search results for: adaptive fuzzy neural inference
360 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks
Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine
Abstract:
This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645359 A Formative Assessment Model within the Competency-Based-Approach for an Individualized E-learning Path
Authors: El Falaki Brahim, Khalidi Idrissi Mohammed, Bennani Samir
Abstract:
E-learning is not restricted to the use of new technologies for the online content, but also induces the adoption of new approaches to improve the quality of education. This quality depends on the ability of these approaches (technical and pedagogical) to provide an adaptive learning environment. Thus, the environment should include features that convey intentions and meeting the educational needs of learners by providing a customized learning path to acquiring a competency concerned In our proposal, we believe that an individualized learning path requires knowledge of the learner. Therefore, it must pass through a personalization of diagnosis to identify precisely the competency gaps to fill, and reduce the cognitive load To personalize the diagnosis and pertinently measure the competency gap, we suggest implementing the formative assessment in the e-learning environment and we propose the introduction of a pre-regulation process in the area of formative assessment, involving its individualization and implementation in e-learning.
Keywords: Competency-Based-Approach, E-learning, Formative assessment, learner model, Modeling, pre-regulation process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122358 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.
Keywords: Factors, Kendall’s coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974357 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811356 Gender based Barriers to Effective Collaboration: A Case Study on Children's Safeguard Partnerships
Authors: L. McAllister, A. Dudau
Abstract:
This paper explores gender related barriers to interagency collaboration in statutory children safeguard partnerships against a theoretical framework that considers individuals, professions and organisations interacting as part of a complex adaptive system. We argue that gender-framed obstacles to effective communication between culturally discrepant agencies can ultimately impact on the effectiveness of policy delivery,. We focused our research on three partnership structures in Sefton Metropolitan Borough in order to observe how interactions occur, whether the agencies involved perceive their occupational environment as being gender affected and whether they believe this can hinder effective collaboration with other biased organisations. Our principal empirical findings indicate that there is a general awareness amongst professionals of the role that gender plays in each of the agencies reviewed, that gender may well constitute a barrier to effective communication, but there is a sense in which there is little scope for change in the short term. We aim to signal here, however, the need to change against the risk of service failure.
Keywords: Children's safeguard, gender, gendered professions, inter-agency collaboration, partnerships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004355 Research on the Teaching Quality Evaluation of China’s Network Music Education APP
Authors: Guangzhuang Yu, Chun-Chu Liu
Abstract:
With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.
Keywords: Network music education APP, teaching quality evaluation, index, connotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844354 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163353 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element
Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao
Abstract:
V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331352 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816351 Musical Instrument Classification Using Embedded Hidden Markov Models
Authors: Ehsan Amid, Sina Rezaei Aghdam
Abstract:
In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891350 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms
Authors: Ching-Fen Jiang
Abstract:
Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.Keywords: edge detection, ultrasonic images, speckle noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483349 Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles
Authors: Zenaide Carvalho da Silva, Andrey Ricardo Pimentel, Leandro Rodrigues Ferreira
Abstract:
Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.
Keywords: Adaptation, interface, learning styles, learning objects, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535348 A Prediction-Based Reversible Watermarking for MRI Images
Authors: Nuha Omran Abokhdair, Azizah Bt Abdul Manaf
Abstract:
Reversible watermarking is a special branch of image watermarking, that is able to recover the original image after extracting the watermark from the image. In this paper, an adaptive prediction-based reversible watermarking scheme is presented, in order to increase the payload capacity of MRI medical images. The scheme divides the image into two parts, Region of Interest (ROI) and Region of Non-Interest (RONI). Two bits are embedded in each embeddable pixel of RONI and one bit is embedded in each embeddable pixel of ROI. The experimental results demonstrate that the proposed scheme is able to achieve high embedding capacity. This is mainly caused by two reasons. First, the pixels that were excluded from data embedding due to overflow/underflow are used for data embedding. Second, large location map that need to be added to watermark data as overhead is eliminated and thus lower data embedding capacity is prevented. Moreover, the scheme provides good visual quality to the watermarked image.
Keywords: Medical image watermarking, reversible watermarking, Difference Expansion, Prediction-Error Expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916347 Design and Implementation of an Intelligent System for Detection of Hazardous Gases using PbPc Sensor Array
Authors: Mahmoud Z. Iskandarani, Nidal F. Shilbayeh
Abstract:
The voltage/current characteristics and the effect of NO2 gas on the electrical conductivity of a PbPc gas sensor array is investigated. The gas sensor is manufactured using vacuum deposition of gold electrodes on sapphire substrate with the leadphathalocyanine vacuum sublimed on the top of the gold electrodes. Two versions of the PbPc gas sensor array are investigated. The tested types differ in the gap sizes between the deposited gold electrodes. The sensors are tested at different temperatures to account for conductivity changes as the molecular adsorption/desorption rate is affected by heat. The obtained results found to be encouraging as the sensors shoed stability and sensitivity towards low concentration of applied NO2 gas.Keywords: Intelligent System, PbPc, Gas Sensor, Hardware, Software, Neural.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575346 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.
Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542345 Overcrowding and Adequate Housing: The Potential of Adaptability
Authors: Inês Ramalhete, Hugo Farias, Rui da Silva Pinto
Abstract:
Adequate housing has been a widely discussed theme in academic circles related to low-cost housing, whereas its physical features are easy to deal with, overcrowding (related to social, cultural and economic aspects) is still ambiguous, particularly regarding the set of indicators that can accurately reflect and measure it. This paper develops research on low-cost housing models for developing countries and what is the best method to embed overcrowding as an important parameter for adaptability. A critical review of international overcrowding indicators and their application in two developing countries, Cape Verde and Angola, is presented. The several rationales and the constraints for an accurate assessment of overcrowding are considered, namely baseline data (statistics), which can induce misjudgments, as well as social and cultural factors (such as personal choices of residents). This paper proposes a way to tackle overcrowding through housing adaptability, considering factors such as physical flexibility, functional ambiguity, and incremental expansion schemes. Moreover, a case-study is presented to establish a framework for the theoretical application of the proposed approach.
Keywords: Adaptive housing, low-cost housing, overcrowding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107344 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848343 Preemptive Possibilistic Linear Programming:Application to Aggregate Production Planning
Authors: Phruksaphanrat B.
Abstract:
This research proposes a Preemptive Possibilistic Linear Programming (PPLP) approach for solving multiobjective Aggregate Production Planning (APP) problem with interval demand and imprecise unit price and related operating costs. The proposed approach attempts to maximize profit and minimize changes of workforce. It transforms the total profit objective that has imprecise information to three crisp objective functions, which are maximizing the most possible value of profit, minimizing the risk of obtaining the lower profit and maximizing the opportunity of obtaining the higher profit. The change of workforce level objective is also converted. Then, the problem is solved according to objective priorities. It is easier than simultaneously solve the multiobjective problem as performed in existing approach. Possible range of interval demand is also used to increase flexibility of obtaining the better production plan. A practical application of an electronic company is illustrated to show the effectiveness of the proposed model.Keywords: Aggregate production planning, Fuzzy sets theory, Possibilistic linear programming, Preemptive priority
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860342 Performance Enhancement of Analog Voltage Inverter with Adaptive Gain Control for Capacitive Load
Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang
Abstract:
Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.Keywords: Analog voltage inverter, Capacitive load, Gain control, DC-DC converter, Piezoelectric, Voltage waveform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751341 ECG Analysis using Nature Inspired Algorithm
Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan
Abstract:
This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309340 A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks
Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry
Abstract:
Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.
Keywords: Effective band inference based power control algorithm (EBIA), Power Selection MRMC Unification Protocol (PMMUP), MRMC State unification Variable Prediction (MRSUP), Wireless Mesh Networks (WMNs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825339 Extended Set of DCT-TPLBP and DCT-FPLBP for Face Recognition
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we describe an application for face recognition. Many studies have used local descriptors to characterize a face, the performance of these local descriptors remain low by global descriptors (working on the entire image). The application of local descriptors (cutting image into blocks) must be able to store both the advantages of global and local methods in the Discrete Cosine Transform (DCT) domain. This system uses neural network techniques. The letter method provides a good compromise between the two approaches in terms of simplifying of calculation and classifying performance. Finally, we compare our results with those obtained from other local and global conventional approaches.Keywords: Face detection, face recognition, discrete cosine transform (DCT), FPLBP, TPLBP, NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973338 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: LiDAR, real-time system, clustering, tracking, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4670337 Adaptive Gait Pattern Generation of Biped Robot based on Human's Gait Pattern Analysis
Authors: Seungsuk Ha, Youngjoon Han, Hernsoo Hahn
Abstract:
This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.
Keywords: Biped robot, gait pattern, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269336 A Signature-Based Secure Authentication Framework for Vehicular Ad Hoc Networks
Authors: J. Jenefa, E. A. Mary Anita
Abstract:
Vehicular Ad hoc NETwork (VANET) is a kind of Mobile Ad hoc NETwork (MANET). It allows the vehicles to communicate with one another as well as with nearby Road Side Units (RSU) and Regional Trusted Authorities (RTA). Vehicles communicate through On-Board Units (OBU) in which privacy has to be assured which will avoid the misuse of private data. A secure authentication framework for VANETs is proposed in which Public Key Cryptography (PKC) based adaptive pseudonym scheme is used to generate self-generated pseudonyms. Self-generated pseudonyms are used instead of real IDs for privacy preservation and non-repudiation. The ID-Based Signature (IBS) and ID-Based Online/Offline Signature (IBOOS) schemes are used for authentication. IBS is used to authenticate between vehicle and RSU whereas IBOOS provides authentication among vehicles. Security attacks like impersonation attack in the network are resolved and the attacking nodes are rejected from the network, thereby ensuring secure communication among the vehicles in the network. Simulation results shows that the proposed system provides better authentication in VANET environment.
Keywords: Non-repudiation, privacy preservation, public key cryptography, self- generated pseudonym.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448335 An Analysis of Thermal Comfort for Indoor Environment of the New Assiut Housing in Egypt
Authors: Amr Sayed, Y. Hiroshi, T. Goto, N. Enteria, M. M. Radwan, M. Abdelsamei Eid
Abstract:
Climate considerations are essential dimensions in the assessment of thermal comfort and indoor environments inside Egyptian housing. The primary aim of this paper is to analyze the indoor environment of new housing in the new city of Assiut in the Southern Upper Egypt zone, in order to evaluate its thermal environment and determine the acceptable indoor operative temperatures. The psychrometric charts for ASHRAE Standard 55 and ACS used in this study would facilitate an overall representation of the climate in one of the hottest months in the summer season. This study helps to understand and deal with this problem and work on a passive cooling ventilation strategy in these contexts in future studies. The results that demonstrated the indoor temperature is too high, ranges between 31°C to 40°C in different natural ventilation strategies. This causes the indoor environment to be far from the optimum comfort operative temperature of ACS except when using air conditioners. Finally, this study is considered a base for developing a new system using natural ventilation with passive cooling strategies.
Keywords: Adaptive comfort standard (ACS), indoor environment, thermal comfort, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4239334 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.
Keywords: Hierarchical process control, knowledge discovery from databases, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775333 Adopting Procedural Animation Technology to Generate Locomotion of Quadruped Characters in Dynamic Environments
Authors: Zongyou He, Bashu Tsai, Chinhung Ko, Tainchi Lu
Abstract:
A procedural-animation-based approach which rapidly synthesize the adaptive locomotion for quadruped characters that they can walk or run in any directions on an uneven terrain within a dynamic environment was proposed. We devise practical motion models of the quadruped animals for adapting to a varied terrain in a real-time manner. While synthesizing locomotion, we choose the corresponding motion models by means of the footstep prediction of the current state in the dynamic environment, adjust the key-frames of the motion models relying on the terrain-s attributes, calculate the collision-free legs- trajectories, and interpolate the key-frames according to the legs- trajectories. Finally, we apply dynamic time warping to each part of motion for seamlessly concatenating all desired transition motions to complete the whole locomotion. We reduce the time cost of producing the locomotion and takes virtual characters to fit in with dynamic environments no matter when the environments are changed by users.Keywords: Dynamic environment, motion synthesis, procedural animation, quadruped locomotion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891332 Data Embedding Based on Better Use of Bits in Image Pixels
Authors: Rehab H. Alwan, Fadhil J. Kadhim, Ahmad T. Al-Taani
Abstract:
In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.
Keywords: Image embedding, Edge detection, gray level connectivity, information hiding, digital image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148331 Frank Norris’ McTeague: An Entropic Melodrama
Authors: Mohsen Masoomi, Fazel Asadi Amjad, Monireh Arvin
Abstract:
According to Naturalistic principles, human destiny in the form of blind chance and determinism, entraps the individual, so man is a defenceless creature unable to escape from the ruthless paws of a stoical universe. In Naturalism; nonetheless, melodrama mirrors a conscious alternative with a peculiar function. A typical American Naturalistic character thus cannot be a subject for social criticism of American society since they are not victims of the ongoing virtual slavery, capitalist system, nor of a ruined milieu, but of their own volition, and more importantly, their character frailty. Through a Postmodern viewpoint, each Naturalistic work can encompass some entropic trends and changes culminating in an entire failure and devastation. Frank Norris in McTeague displays the futile struggles of ordinary men and how they end up brutes. McTeague encompasses intoxication, abuse, violation, and ruthless homicides. Norris’ depictions of the falling individual as a demon represent the entropic dimension of Naturalistic novels. McTeague’s defeat is somewhat his own fault, the result of his own blunders and resolution, not the result of sheer accident. Throughout the novel, each character is a kind of insane quester indicating McTeague’s decadence and, by inference, the decadence of Western civilisation. McTeague seems to designate Norris’ solicitude for a community fabricated by the elements of human negative demeanours and conducts hauling acute symptoms of infectious dehumanisation. The aim of this article is to illustrate how one specific negative human disposition gradually, like a running fire, can spread everywhere and burn everything in itself. The author applies the concept of entropy metaphorically to describe the individual devolutions that necessarily comprise community entropy in McTeague, a dying universe.
Keywords: Animal imagery, entropy, Gypsy, melodrama.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443