Search results for: real estate company
394 Conceptualizing an Open Living Museum Beyond Musealization in the Context of a Historic City: Study of Bhaktapur World Heritage Site, Nepal
Authors: Shyam Sunder Kawan
Abstract:
Museums are enclosed buildings encompassing and displaying creative artworks, artefacts and discoveries for people’s knowledge and observation. In the context of Nepal, museums and exhibition areas are either adaptive to small gallery spaces in residences or ‘neo-classical palatial complexes’ that evolved during the 19th century. This study accepts the sparse occurrence of a diverse range of artworks and expressions in the country's complex cultural manifestations within vivid ethnic groups. This study explores the immense potential of one such prevalence beyond the delimitation of physical boundaries. Taking Bhaktapur World Heritage Site as a case, the study perpetuates its investigation into real-time life activities that this city and its cultural landscapes ensemble. Seeking the ‘musealization’ as an urban process to induce museums into the city precinct, this study anticipates art-space into urban spaces to offer a limitless experience for this contemporary world. Unveiling art as an experiential component, this study aims in conceptualizing a living heritage as an infinite resource for museum interpretation beyond just educational institute purposes.
Keywords: Living museum, site museum, musealization, contemporary arts, cultural heritage, historic cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164393 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs
Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang
Abstract:
Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596392 Optimizing of Fuzzy C-Means Clustering Algorithm Using GA
Authors: Mohanad Alata, Mohammad Molhim, Abdullah Ramini
Abstract:
Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.Keywords: Fuzzy clustering, Fuzzy C-Means, Genetic Algorithm, Sugeno fuzzy systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262391 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4033390 Trade-off Between NOX, Soot and EGR Rates for an IDI Diesel Engine Fuelled with JB5
Authors: M. Gomaa, A. J. Alimin, K. A. Kamarudin
Abstract:
Nowadays, the focus on renewable energy and alternative fuels has increased due to increasing oil prices, environment pollution, and also concern on preserving the nature. Biodiesel has been known as an attractive alternative fuel although biodiesel produced from edible oil is very expensive than conventional diesel. Therefore, the uses of biodiesel produced from non-edible oils are much better option. Currently Jatropha biodiesel (JBD) is receiving attention as an alternative fuel for diesel engine. Biodiesel is non-toxic, biodegradable, high lubricant ability, highly renewable, and its use therefore produces real reduction in petroleum consumption and carbon dioxide (CO2) emissions. Although biodiesel has many advantages, but it still has several properties need to improve, such as lower calorific value, lower effective engine power, higher emission of nitrogen oxides (NOX) and greater sensitivity to low temperature. Exhaust gas recirculation (EGR) is effective technique to reduce NOX emission from diesel engines because it enables lower flame temperature and oxygen concentration in the combustion chamber. Some studies succeeded to reduce the NOX emission from biodiesel by EGR but they observed increasing soot emission. The aim of this study was to investigate the engine performance and soot emission by using blended Jatropha biodiesel with different EGR rates. A CI engine that is water-cooled, turbocharged, using indirect injection system was used for the investigation. Soot emission, NOX, CO2, carbon monoxide (CO) were recorded and various engine performance parameters were also evaluated.
Keywords: EGR, Jatropha biodiesel, NOX, Soot emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294389 Entropy Based Spatial Design: A Genetic Algorithm Approach (Case Study)
Authors: Abbas Siefi, Mohammad Javad Karimifar
Abstract:
We study the spatial design of experiment and we want to select a most informative subset, having prespecified size, from a set of correlated random variables. The problem arises in many applied domains, such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and possibly at different times. In spatial design, when the design region and the set of interest are discrete then the covariance matrix completely describe any objective function and our goal is to choose a feasible design that minimizes the resulting uncertainty. The problem is recast as that of maximizing the determinant of the covariance matrix of the chosen subset. This problem is NP-hard. For using these designs in computer experiments, in many cases, the design space is very large and it's not possible to calculate the exact optimal solution. Heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective and exact solution not possible. We developed a GA algorithm to take advantage of the exploratory power of this algorithm. The successful application of this method is demonstrated in large design space. We consider a real case of design of experiment. In our problem, design space is very large and for solving the problem, we used proposed GA algorithm.
Keywords: Spatial design of experiments, maximum entropy sampling, computer experiments, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660388 Two-Stage Launch Vehicle Trajectory Modeling for Low Earth Orbit Applications
Authors: Assem M. F. Sallam, Ah. El-S. Makled
Abstract:
This paper presents a study on the trajectory of a two stage launch vehicle. The study includes dynamic responses of motion parameters as well as the variation of angles affecting the orientation of the launch vehicle (LV). LV dynamic characteristics including state vector variation with corresponding altitude and velocity for the different LV stages separation, as well as the angle of attack and flight path angles are also discussed. A flight trajectory study for the drop zone of first stage and the jettisoning of fairing are introduced in the mathematical modeling to study their effect. To increase the accuracy of the LV model, atmospheric model is used taking into consideration geographical location and the values of solar flux related to the date and time of launch, accurate atmospheric model leads to enhancement of the calculation of Mach number, which affects the drag force over the LV. The mathematical model is implemented on MATLAB based software (Simulink). The real available experimental data are compared with results obtained from the theoretical computation model. The comparison shows good agreement, which proves the validity of the developed simulation model; the maximum error noticed was generally less than 10%, which is a result that can lead to future works and enhancement to decrease this level of error.
Keywords: Launch vehicle modeling, launch vehicle trajectory, mathematical modeling, MATLAB-Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3301387 On Algebraic Structure of Improved Gauss-Seidel Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.
Keywords: Linear system of equations, Gauss-Seidel iteration, algebraic structure, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932386 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539385 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726384 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications
Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami
Abstract:
Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.Keywords: Address, data set, memory, prediction, recurrentneural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676383 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data
Authors: Luís Pina
Abstract:
The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.
Keywords: GSM, marine biology, marine turtles, USSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933382 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679381 Motivated Support Vector Regression using Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625380 Motivated Support Vector Regression with Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401379 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494378 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.Keywords: Evolutionary algorithms, genetic algorithm, hydropower, multi-objective, reservoir operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2796377 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218376 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation
Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady
Abstract:
Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.
Keywords: Distribution Factors, Power System, Sensitivity Factors, Electricity Market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628375 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775374 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis
Authors: N. F. Hanna, A. M. Haridy
Abstract:
One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.
Keywords: Modal analysis, pushover analysis, seismic performance, target displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624373 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria
Authors: Bello Ali
Abstract:
The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.
Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136372 Value Analysis Dashboard in Supply Chain Management: Real Case Study from Iran
Authors: Seyedehfatemeh Golrizgashti, Seyedali Dalil
Abstract:
The goal of this paper is proposing a supply chain value dashboard in home appliance manufacturing firms to create more value for all stakeholders via balanced scorecard approach. Balanced scorecard is an effective approach that managers have used to evaluate supply chain performance in many fields but there is a lack of enough attention to all supply chain stakeholders, improving value creation and, defining correlation between value indicators and performance measuring quantitatively. In this research the key stakeholders in home appliance supply chain, value indicators with respect to create more value for stakeholders and the most important metrics to evaluate supply chain value performance based on balanced scorecard approach have been selected via literature review. The most important indicators based on expert’s judgment acquired by in survey focused on creating more value for. Structural equation modelling has been used to disclose relations between value indicators and balanced scorecard metrics. The important result of this research is identifying effective value dashboard to create more value for all stakeholders in supply chain via balanced scorecard approach and based on an empirical study covering ten home appliance manufacturing firms in Iran. Home appliance manufacturing firms can increase their stakeholder's satisfaction by using this value dashboard.Keywords: Supply chain management, balanced scorecard, value, Structural modeling, Stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080371 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines
Authors: Mona Soliman Habib
Abstract:
This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691370 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3810369 Moving Area Filter to Detect Object in Video Sequence from Moving Platform
Authors: Sallama Athab, Hala Bahjat
Abstract:
Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.
Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121368 Numerical Simulation of Tidal Currents in Persian Gulf
Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin
Abstract:
In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059367 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.
Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805366 Evolution of the Hydrogen Atom: An Alternative to the Big Bang Theory
Authors: Ghassan H. Halasa
Abstract:
Elementary particles are created in pairs of equal and opposite momentums at a reference frame at the speed of light. The speed of light reference frame is viewed as a point in space as observed by observer at rest. This point in space is the bang location of the big bang theory. The bang in the big bang theory is not more than sustained flow of pairs of positive and negative elementary particles. Electrons and negative charged elementary particles are ejected from this point in space at velocities faster than light, while protons and positively charged particles obtain velocities lower than light. Subsonic masses are found to have real and positive charge, while supersonic masses are found to be negative and imaginary indicating that the two masses are of different entities. The electron-s super-sonic speed, as viewed by rest observer was calculated and found to be less than the speed of light and is little higher than the electron speed in Bohr-s orbit. The newly formed hydrogen gas temperature was found to be in agreement with temperatures found on newly formed stars. Universe expansion was found to be in agreement. Partial mass and charge elementary particles and particles with momentum only were explained in the context of this theoretical approach.
Keywords: Evolution of Matter, Multidimensional spaces, relativity, Big Bang Theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639365 Physicians’ Knowledge and Perception of Gene Profiling in Malaysia
Authors: Farahnaz Amini, Woo Yun Kin, Lazwani Kolandaiveloo
Abstract:
Availability of different genetic tests after completion of Human Genome Project increases the physicians’ responsibility to keep themselves update on the potential implementation of these genetic tests in their daily practice. However, due to numbers of barriers, still many of physicians are not either aware of these tests or are not willing to offer or refer their patients for genetic tests. This study was conducted an anonymous, cross-sectional, mailed-based survey to develop a primary data of Malaysian physicians’ level of knowledge and perception of gene profiling. Questionnaire had 29 questions. Total scores on selected questions were used to assess the level of knowledge. The highest possible score was 11. Descriptive statistics, one way ANOVA and chi-squared test was used for statistical analysis. Sixty three completed questionnaires were returned by 27 general practitioners (GPs) and 36 medical specialists. Responders’ age ranges from 24 to 55 years old (mean 30.2 ± 6.4). About 40% of the participants rated themselves as having poor level of knowledge in genetics in general whilst 60% believed that they have fair level of knowledge; however, almost half (46%) of the respondents felt that they were not knowledgeable about available genetic tests. A majority (94%) of the responders were not aware of any lab or company which is offering gene profiling services in Malaysia. Only 4% of participants were aware of using gene profiling for detection of dosage of some drugs. Respondents perceived greater utility of gene profiling for breast cancer (38%) compared to the colorectal familial cancer (3%). The score of knowledge ranged from 2 to 8 (mean 4.38 ± 1.67). Non- significant differences between score of knowledge of GPs and specialists were observed, with score of 4.19 and 4.58 respectively. There was no significant association between any demographic factors and level of knowledge. However, those who graduated between years 2001 to 2005 had higher level of knowledge. Overall, 83% of participants showed relatively high level of perception on value of gene profiling to detect patient’s risk of disease. However, low perception was observed for both statements of using gene profiling for general population in order to alter their lifestyle (25%) as well as having the full sequence of a patient genome for the purpose of determining a patient’s best match for treatment (18%). The lack of clinical guidelines, limited provider knowledge and awareness, lack of time and resources to educate patients, lack of evidence-based clinical information and cost of tests were the most barriers of ordering gene profiling mentioned by physicians. In conclusion Malaysian physicians who participate in this study had mediocre level of knowledge and awareness in gene profiling. The low exposure to the genetic questions and problems might be a key predictor of lack of awareness and knowledge on available genetic tests. Educational and training workshop might be useful in helping Malaysian physicians incorporate genetic profiling into practice for eligible patients.Keywords: Gene Profiling, Knowledge, Malaysia, Physician.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956