Search results for: Hybrid genetic algorithm
1996 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model
Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed
Abstract:
Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.
Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15451995 Real Time Speed Estimation of Vehicles
Authors: Azhar Hussain, Kashif Shahzad, Chunming Tang
Abstract:
this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.
Keywords: Defuzzification, Fuzzy similarity approach, lane cropping, Maximum a Posterior Probability (MAP) estimator, Speed estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28061994 Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev Shahwar F. Ragab
Abstract:
In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.
Keywords: Variational iteration method, free convection, Chaos, Lorenz equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351993 Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications
Authors: James Dunia, Bakari M. M. Mwinyiwiwa
Abstract:
Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converters are described. Incremental conductance control method has been used as maximum power point tracking (MPPT) algorithm. The two converters and MPPT algorithm were modelled using MATLAB/Simulink software for simulation. Simulation results show that both Ćuk and SEPIC converters can track the maximum power point with some minor variations.
Keywords: Ćuk Converter, Incremental Conductance, Maximum Power Point Tracking, PV Module, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102291992 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.
Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52971991 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8121990 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161989 An Integrated Software Architecture for Bandwidth Adaptive Video Streaming
Authors: T. Arsan
Abstract:
Video streaming over lossy IP networks is very important issues, due to the heterogeneous structure of networks. Infrastructure of the Internet exhibits variable bandwidths, delays, congestions and time-varying packet losses. Because of variable attributes of the Internet, video streaming applications should not only have a good end-to-end transport performance but also have a robust rate control, furthermore multipath rate allocation mechanism. So for providing the video streaming service quality, some other components such as Bandwidth Estimation and Adaptive Rate Controller should be taken into consideration. This paper gives an overview of video streaming concept and bandwidth estimation tools and then introduces special architectures for bandwidth adaptive video streaming. A bandwidth estimation algorithm – pathChirp, Optimized Rate Controllers and Multipath Rate Allocation Algorithm are considered as all-in-one solution for video streaming problem. This solution is directed and optimized by a decision center which is designed for obtaining the maximum quality at the receiving side.Keywords: Adaptive Video Streaming, Bandwidth Estimation, QoS, Software Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311988 Parallel and Distributed Mining of Association Rule on Knowledge Grid
Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran
Abstract:
In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21821987 Node Pair Selection Scheme in Relay-Aided Communication Based On Stable Marriage Problem
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.
Keywords: Relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351986 Differential Evolution Based Optimal Choice and Location of Facts Devices in Restructured Power System
Authors: K. Balamurugan, V. Dharmalingam, R. Muralisachithanandam, R. Sankaran
Abstract:
This paper deals with the optimal choice and location of FACTS devices in deregulated power systems using Differential Evolution algorithm. The main objective of this paper is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices such as TCSC and SVC are simulated in this study. Furthermore, their investment costs are also considered. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and location of suitable FACTS devices in deregulated electricity market.
Keywords: FACTS Devices, Deregulated Electricity Market, Optimal Location, Differential Evolution, Mat Lab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891985 Electromagnetic Imaging of Inhomogeneous Dielectric Cylinders Buried in a Slab Mediumby TE Wave Illumination
Authors: Chung-Hsin Huang, Chien-Ching Chiu, Chun Jen Lin
Abstract:
The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium by transverse electric (TE) wave illumination is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.Keywords: Slab Medium, Unrelated Illumination Method, TEWave Illumination, Inhomogeneous Cylinders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12041984 CFD Modeling of PROX Microreactor for Fuel Processing
Authors: M. Vahabi, M. H. Akbari
Abstract:
In order to investigate a PROX microreactor performance, two-dimensional modeling of the reacting flow between two parallel plates is performed through a finite volume method using an improved SIMPLE algorithm. A three-step surface kinetics including hydrogen oxidation, carbon monoxide oxidation and water-gas shift reaction is applied for a Pt-Fe/γ-Al2O3 catalyst and operating temperatures of about 100ºC. Flow pattern, pressure field, temperature distribution, and mole fractions of species are found in the whole domain for all cases. Also, the required reactive length for removing carbon monoxide from about 2% to less than 10 ppm is found. Furthermore, effects of hydraulic diameter, wall temperature, and inlet mole fraction of air and water are investigated by considering carbon monoxide selectivity and conversion. It is found that air and water addition may improve the performance of the microreactor in carbon monoxide removal in such operating conditions; this is in agreement with the pervious published results.Keywords: CFD, Fuel Processing, PROX, Reacting Flow, SIMPLE algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14411983 Object Motion Tracking Based On Color Detection for Android Devices
Authors: Zacharenia I. Garofalaki, John T. Amorginos, John N. Ellinas
Abstract:
This paper presents the development of a robot car that can track the motion of an object by detecting its color through an Android device. The employed computer vision algorithm uses the OpenCV library, which is embedded into an Android application of a smartphone, for manipulating the captured image of the object. The captured image of the object is subjected to color conversion and is transformed to a binary image for further processing after color filtering. The desired object is clearly determined after removing pixel noise by applying image morphology operations and contour definition. Finally, the area and the center of the object are determined so that object’s motion to be tracked. The smartphone application has been placed on a robot car and transmits by Bluetooth to an Arduino assembly the motion directives so that to follow objects of a specified color. The experimental evaluation of the proposed algorithm shows reliable color detection and smooth tracking characteristics.Keywords: Android, Arduino Uno, Image processing, Object motion detection, OpenCV library.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45641982 Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania
Authors: Valbona Sota, Efigjeni Kongjika
Abstract:
Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.
Keywords: Micropropagation, minimal growth, storage, wild almond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7941981 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction
Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal
Abstract:
A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO and SA applied to the same problem.
Keywords: Circular arrays, First null beam width, Side lobe level, FFA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31761980 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041979 Artificial Neural Network Approach for Inventory Management Problem
Authors: Govind Shay Sharma, Randhir Singh Baghel
Abstract:
The stock management of raw materials and finished goods is a significant issue for industries in fulfilling customer demand. Optimization of inventory strategies is crucial to enhancing customer service, reducing lead times and costs, and meeting market demand. This paper suggests finding an approach to predict the optimum stock level by utilizing past stocks and forecasting the required quantities. In this paper, we utilized Artificial Neural Network (ANN) to determine the optimal value. The objective of this paper is to discuss the optimized ANN that can find the best solution for the inventory model. In the context of the paper, we mentioned that the k-means algorithm is employed to create homogeneous groups of items. These groups likely exhibit similar characteristics or attributes that make them suitable for being managed using uniform inventory control policies. The paper proposes a method that uses the neural fit algorithm to control the cost of inventory.
Keywords: Artificial Neural Network, inventory management, optimization, distributor center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721978 Infrared Camera-Based Hand Gesture Space Touch System Implementation of Smart Device Environment
Authors: Yang-Keun Ahn, Kwang-Soon Choi, Young-Choong Park, Kwang-Mo Jung
Abstract:
This paper proposes a method to recognize the tip of a finger and space touch hand gesture using an infrared camera in a smart device environment. The proposed method estimates the tip of a finger with a curvature-based ellipse fitting algorithm, and verifies that the estimated object is indeed a finger with an ellipse fitting rectangular area. The feature extracted from the verified finger tip is used to implement the movement of a mouse and clicking gesture. The proposed algorithm was implemented with an actual smart device to test the proposed method. Empirical parameters were obtained from the keypad software and an image analysis tool for the performance optimization, and a comparative analysis with conventional research showed improved performance with the proposed method.
Keywords: Infrared camera, Hand gesture, Smart device, Space touch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371977 Real-Time Specific Weed Recognition System Using Histogram Analysis
Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam
Abstract:
Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Analysis of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.Keywords: Image Processing, real-time recognition, Weeddetection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731976 Trajectory-Based Modified Policy Iteration
Abstract:
This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461975 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes
Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu
Abstract:
In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.
Keywords: Industrial data matrix code, Hough transform, mean shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13361974 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element
Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao
Abstract:
V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13321973 Improving Image Segmentation Performance via Edge Preserving Regularization
Authors: Ying-jie Zhang, Li-ling Ge
Abstract:
This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.Keywords: Energy minimization, image segmentation, level sets, edge regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981972 Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means
Authors: S. Loumi, H. Merrad, F. Alilat, B. Sansal
Abstract:
In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.Keywords: Classification K-means, mathematical morphology, neural network MLP, remote sensing, suspended particulate matter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15231971 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.
Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14561970 Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch
Authors: Kyaw Myo Lin, Pyone Lai Swe, Khine Zin Oo
Abstract:
In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.
Keywords: Analytical approach, distributed generations, optimal size, optimal location, optimal reactive power dispatch, particle swarm optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11731969 A Distributed Weighted Cluster Based Routing Protocol for Manets
Authors: Naveen Chauhan, L.K. Awasthi, Narottam chand, Vivek Katiyar, Ankit Chug
Abstract:
Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).Keywords: MANETs, Clustering, Routing, WirelessCommunication, Distributed Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911968 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191967 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286