Search results for: intellectually engaging learning environments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2622

Search results for: intellectually engaging learning environments

462 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
461 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Authors: Margaret F. Shipley

Abstract:

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
460 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series

Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser

Abstract:

In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.

Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
459 EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language

Authors: Lin, Huifen, Fang, Yueh-chiu

Abstract:

This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.

Keywords: computer-mediated communication, EFL, writing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
458 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
457 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
456 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection

Authors: Ethan Shafer, Timothy Graziano, Jay Fisher

Abstract:

This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.

Keywords: STEM major, STEM, pedagogy, digital literacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
455 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735
454 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS

Authors: A. Althobaiti, M. Munro

Abstract:

Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.

Keywords: Communication, effective information exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
453 The Code-Mixing of Japanese, English and Thai in Line Chat

Authors: Premvadee Na Nakornpanom

Abstract:

Code- mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study is an attempt to explore the linguistic characteristics of the mixing of Japanese, English and Thai in a mobile Line chat room by students with their background of English as L2, Japanese as L3 and Thai as mother tongue. The result found that insertion of Thai content words is a very common linguistic phenomenon embedded with the other two languages in the sentences. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotionally-related. A personal pronoun in Japanese is often mixed into the sentences. The Japanese sentence-final question particle か “ka” was added to the end of the sentence based on Thai grammar rules. Some unique characteristics were created while chatting.

Keywords: Code-mixing, Japanese, English, Thai, Line chat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448
452 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
451 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series

Authors: Chokri Slim

Abstract:

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
450 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
449 Probabilistic Bayesian Framework for Infrared Face Recognition

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.

Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
448 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA

Authors: Beata Wentura-Dudek

Abstract:

In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.

Keywords: United States, financial crisis, unemployment, employment promotion, social media, job creation, training, labour market, employment agencies, lifelong learning, job search assistance, subsidized employment, companies, tax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
447 Power Distance and Knowledge Management from a Post-Taylorist Perspective

Authors: John Walton, Vishal Parikh

Abstract:

Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.

Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
446 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
445 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks

Authors: Peyman Shadman Heidari, Mohammad Khorasani

Abstract:

The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.

Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
444 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: Neural networks, Noise, Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
443 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
442 Legal Education as Forming Factor of Legal Culture in Kazakhstan Modern Society

Authors: M. Karassartova, D. Shormanbayeva, A. Beissenova, S.Balshikeyev

Abstract:

Forming a legal culture among citizens is a complicated and lengthy process, influencing all spheres of social life. It includes promoting justice, learning rights and duties, the introduction of juridical norms and knowledge, and also a process of developing a system of legal acts and constitutional norms. Currently, the evaluative and emotional influence of attempts to establish a legal culture among the citizens of Kazakhstan is limited by real legal practice. As a result, the values essential to a sound civil society are absent from the consciousness of the Kazakh people who are thus, in turn, not able to develop respect for these values. One of the disadvantages of the modern Kazakh educational system is a tendency to underrate the actual forces shaping the worldview of Kazakh youths. The mass-media, which are going through a personnel crisis, cannot provide society with the legal and political information necessary to form the sort of legal culture required for a true civil society.

Keywords: Kazakhstan society, Legal education, legal culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
441 One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.

Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
440 A Temporary Shelter Proposal for Displaced People

Authors: İ. Yetkin, F. Maden, S. Tosun, Y. Akgün, Ö. Kilit, K. Korkmaz, G. Kiper, M. Gündüzalp

Abstract:

Forced migration, whether caused by conflicts or other factors, frequently places individuals in vulnerable situations, necessitating immediate access to shelter. To promptly address the immediate needs of affected individuals, temporary shelters are often established. These shelters are characterized by their adaptable and functional nature, encompassing lightweight and sustainable structural systems, rapid assembly capabilities, modularity, and transportability. The shelter design is contingent upon demand, resulting in distinct phases for different structural forms. A multi-phased shelter approach covers emergency response, temporary shelter, and permanent reconstruction. Emergency shelters play a critical role in providing immediate life-saving aid. In contrast, temporary and transitional shelters, also called “T-shelters,” offer longer-term living environments during the recovery and rebuilding. Among these, temporary shelters are more extensively covered in the literature due to their diverse inhabiting functions. The roles of emergency shelters and temporary shelters are inherently separate, addressing distinct aspects of sheltering processes. Given their prolonged usage, temporary shelters are built for greater durability compared to emergency shelters. Nonetheless, inadequacies in temporary shelters can lead to challenges in ensuring habitability. Issues like non-expandable structures unsuitable for accommodating large families, short-term shelters that worsen conditions, non-waterproof materials providing insufficient protection against bad weather conditions, and complex installation systems contribute to these problems. Given the aforementioned problems, there arises a need to develop adaptive shelters featuring lightweight components for ease of transport, possess the ability for rapid assembly, and utilize durable materials to withstand adverse weather conditions. In this study, first, the state-of-the-art on temporary shelters is presented. Then, a temporary shelter composed of foldable plates is proposed, which can easily be assembled and transportable. The proposed shelter is deliberated upon its movement capacity, transportability, and flexibility. This study makes a valuable contribution to the literature since it not only offers a systematic analysis of temporary shelters utilizing kinetic systems but also presents a practical solution that meets the necessary design requirements.

Keywords: Deployable structures, disasters, foldable plates, temporary shelters, transformable structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121
439 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work

Authors: O. Lasaga

Abstract:

Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.

Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
438 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm

Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang

Abstract:

The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.

Keywords: Degree, initial cluster center, k-means, minimum spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
437 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: Cross-language analysis, machine learning, machine translation, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
436 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142
435 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
434 The Design of Picture Books for Children from Tales of Amphawa Fireflies

Authors: Marut Pichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: Children’s illustrated book, Fireflies, Amphawa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
433 Using Weblog to Promote Critical Thinking – An Exploratory Study

Authors: Huay Lit Woo, Qiyun Wang

Abstract:

Weblog is an Internet tool that is believed to possess great potential to facilitate learning in education. This study wants to know if weblog can be used to promote students- critical thinking. It used a group of secondary two students from a Singapore school to write weblogs as a means of substitution for their traditional handwritten assignments. The topics for the weblogging are taken from History syllabus but modified to suit the purpose of this study. Weblogs from the students were collected and analysed using a known coding system for measuring critical thinking. Results show that the topic for blogging is crucial in determining the types of critical thinking employed by the students. Students are seen to display critical thinking traits in the areas of information sourcing, linking information to arguments and viewpoints justification. Students- criticalness is more profound when the information for writing a topic is readily available. Otherwise, they tend to be less critical and subjective. The study also found that students lack the ability to source for external information suggesting that students may need to be taught information literacy in order to widen their use of critical thinking skills.

Keywords: Affordance, blog, critical thinking, perception, weblog.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171