Search results for: unique word detection
2054 Seat Assignment Problem Optimization
Authors: Mohammed Salem Alzahrani
Abstract:
In this paper the optimality of the solution of an existing real word assignment problem known as the seat assignment problem using Seat Assignment Method (SAM) is discussed. SAM is the newly driven method from three existing methods, Hungarian Method, Northwest Corner Method and Least Cost Method in a special way that produces the easiness & fairness among all methods that solve the seat assignment problem.Keywords: Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM), A Real Word Assignment Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34462053 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: Autonomous maritime vehicle, object detection, situation awareness, tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13292052 On the Verification of Power Nap Associated with Stage 2 Sleep and Its Application
Authors: Jetsada Arnin, Yodchanan Wongsawat
Abstract:
One of the most important causes of accidents is driver fatigue. To reduce the accidental rate, the driver needs a quick nap when feeling sleepy. Hence, searching for the minimum time period of nap is a very challenging problem. The purpose of this paper is twofold, i.e. to investigate the possible fastest time period for nap and its relationship with stage 2 sleep, and to develop an automatic stage 2 sleep detection and alarm device. The experiment for this investigation is designed with 21 subjects. It yields the result that waking up the subjects after getting into stage 2 sleep for 3-5 minutes can efficiently reduce the sleepiness. Furthermore, the automatic stage 2 sleep detection and alarm device yields the real-time detection accuracy of approximately 85% which is comparable with the commercial sleep lab system.Keywords: Stage 2 sleep, nap, sleep detection, real-time, EEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14592051 Rapid Development of Sport and Sport Management at the Beginning of the Third Millennium
Authors: Irena Durdová
Abstract:
Most people know through experience and intuition what the word „sport“ means. Sport includes a combination of these configurations when it involves team competitions, tournaments, or matches in dual sports or individual sports. Sport management - it is an area of professional endeavor in which a variety of sport-related managerial careers exist and it is also an area of academic professional preparation. Exists three unique aspects of sport management: sport marketing, sport enterprise financial structures and sport industry career paths. The aim of the paper was to highlight the growing importance of sport in contemporary society, especially to emphasize its socio-economic benefits and refer to the development of sport management and marketing. The article has shown that sport contributes 2-3% to gross domestic product in the Czech Republic and that the demand for experts, specialists educated for the sports manager profession is growing.
Keywords: management, sport, sport management, marketing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532050 A Novel Framework for Abnormal Behaviour Identification and Detection for Wireless Sensor Networks
Authors: Muhammad R. Ahmed, Xu Huang, Dharmendra Sharma
Abstract:
Despite extensive study on wireless sensor network security, defending internal attacks and finding abnormal behaviour of the sensor are still difficult and unsolved task. The conventional cryptographic technique does not give the robust security or detection process to save the network from internal attacker that cause by abnormal behavior. The insider attacker or abnormally behaved sensor identificationand location detection framework using false massage detection and Time difference of Arrival (TDoA) is presented in this paper. It has been shown that the new framework can efficiently identify and detect the insider attacker location so that the attacker can be reprogrammed or subside from the network to save from internal attack.Keywords: Insider Attaker identification, Abnormal Behaviour, Location detection, Time difference of Arrival (TDoA), Wireless sensor network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17742049 Study on Crater Detection Using FLDA
Authors: Yoshiaki Takeda, Norifumi Aoyama, Takahiro Tanaami, Syouhei Honda, Kenta Tabata, Hiroyuki Kamata
Abstract:
In this paper, we validate crater detection in moon surface image using FLDA. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) project aiming at the pin-point landing to the moon surface. The point where the lander should land is judged by the position relations of the craters obtained via camera, so the real-time image processing becomes important element. Besides, in the SLIM project, 400kg-class lander is assumed, therefore, high-performance computers for image processing cannot be equipped. We are studying various crater detection methods such as Haar-Like features, LBP, and PCA. And we think these methods are appropriate to the project, however, to identify the unlearned images obtained by actual is insufficient. In this paper, we examine the crater detection using FLDA, and compare with the conventional methods.
Keywords: Crater Detection, Fisher Linear Discriminant Analysis , Haar-Like Feature, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292048 The Algorithm of Semi-Automatic Thai Spoonerism Words for Bi-Syllable
Authors: Nutthapat Kaewrattanapat, Wannarat Bunchongkien
Abstract:
The purposes of this research are to study and develop the algorithm of Thai spoonerism words by semi-automatic computer programs, that is to say, in part of data input, syllables are already separated and in part of spoonerism, the developed algorithm is utilized, which can establish rules and mechanisms in Thai spoonerism words for bi-syllables by utilizing analysis in elements of the syllables, namely cluster consonant, vowel, intonation mark and final consonant. From the study, it is found that bi-syllable Thai spoonerism has 1 case of spoonerism mechanism, namely transposition in value of vowel, intonation mark and consonant of both 2 syllables but keeping consonant value and cluster word (if any). From the study, the rules and mechanisms in Thai spoonerism word were applied to develop as Thai spoonerism word software, utilizing PHP program. the software was brought to conduct a performance test on software execution; it is found that the program performs bi-syllable Thai spoonerism correctly or 99% of all words used in the test and found faults on the program at 1% as the words obtained from spoonerism may not be spelling in conformity with Thai grammar and the answer in Thai spoonerism could be more than 1 answer.
Keywords: Algorithm, Spoonerism, Computational Linguistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23582047 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: Building detection, tree detection, matched filtering, multiscale, local maximum filtering, watershed segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492046 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37352045 Automatic Segmentation of the Clean Speech Signal
Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze
Abstract:
Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.
Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25082044 Computer Aided Detection on Mammography
Authors: Giovanni Luca Masala
Abstract:
A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272043 Scene Adaptive Shadow Detection Algorithm
Authors: Mohammed Ibrahim M, Anupama R.
Abstract:
Robustness is one of the primary performance criteria for an Intelligent Video Surveillance (IVS) system. One of the key factors in enhancing the robustness of dynamic video analysis is,providing accurate and reliable means for shadow detection. If left undetected, shadow pixels may result in incorrect object tracking and classification, as it tends to distort localization and measurement information. Most of the algorithms proposed in literature are computationally expensive; some to the extent of equalling computational requirement of motion detection. In this paper, the homogeneity property of shadows is explored in a novel way for shadow detection. An adaptive division image (which highlights homogeneity property of shadows) analysis followed by a relatively simpler projection histogram analysis for penumbra suppression is the key novelty in our approach.
Keywords: homogeneity, penumbra, projection histogram, shadow correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022042 An Improved Lattice Reduction Aided Detection Scheme for MIMO-OFDM System
Authors: Jang-Kyun Ahn, Seung-Jun Yu, Eui-Young Lee, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient lattice-reduction-aided detection (LRD) scheme to improve the detection performance of MIMO-OFDM system. In this proposed scheme, V candidate symbols are considered at the first layer, and V probable streams are detected with LRD scheme according to the first detected V candidate symbols. Then, the most probable stream is selected through a ML test. Since the proposed scheme can more accurately detect initial symbol and can reduce transmission of error to rest symbols, the proposed scheme shows more improved performance than conventional LRD with very low complexity.Keywords: Lattice reduction aided detection, MIMO-OFDM, QRD-M, V-BLAST.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202041 Finding Sparse Features in Face Detection Using Genetic Algorithms
Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani
Abstract:
Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.Keywords: Face Detection, Genetic Algorithms, Sparse Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812040 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.
Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6562039 Gradual Shot Boundary Detection and Classification Based on Fractal Analysis
Authors: Zeinab Zeinalpour-Tabrizi, Faeze Asdaghi, Mahmooh Fathy, Mohammad Reza Jahed-Motlagh
Abstract:
Shot boundary detection is a fundamental step for the organization of large video data. In this paper, we propose a new method for video gradual shots detection and classification, using advantages of fractal analysis and AIS-based classifier. Proposed features are “vertical intercept" and “fractal dimension" of each frame of videos which are computed using Fourier transform coefficients. We also used a classifier based on Clonal Selection Algorithm. We have carried out our solution and assessed it according to the TRECVID2006 benchmark dataset.
Keywords: shot boundary detection, gradual shots, fractal analysis, artificial immune system, choose Clooney.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19242038 Fingerprint on Ballistic after Shooting
Authors: Narong Kulnides
Abstract:
This research involved fingerprints on ballistics after shooting. Two objectives of research were as follow; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that
- Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times.
- After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively.
Keywords: Ballistic, Fingerprint, Shooting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25902037 Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques
Authors: H. Elbehiery, A. Hefnawy, M. Elewa
Abstract:
Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.
Keywords: Quality control, Defects detection, Visual control, Image processing, Morphological operation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66382036 Advanced Polymorphic Techniques
Authors: Philippe Beaucamps
Abstract:
Nowadays viruses use polymorphic techniques to mutate their code on each replication, thus evading detection by antiviruses. However detection by emulation can defeat simple polymorphism: thus metamorphic techniques are used which thoroughly change the viral code, even after decryption. We briefly detail this evolution of virus protection techniques against detection and then study the METAPHOR virus, today's most advanced metamorphic virus.
Keywords: Computer virus, Viral mutation, Polymorphism, Meta¬morphism, MetaPHOR, Virus history, Obfuscation, Viral genetic techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24872035 Unsupervised Outlier Detection in Streaming Data Using Weighted Clustering
Authors: Yogita, Durga Toshniwal
Abstract:
Outlier detection in streaming data is very challenging because streaming data cannot be scanned multiple times and also new concepts may keep evolving. Irrelevant attributes can be termed as noisy attributes and such attributes further magnify the challenge of working with data streams. In this paper, we propose an unsupervised outlier detection scheme for streaming data. This scheme is based on clustering as clustering is an unsupervised data mining task and it does not require labeled data, both density based and partitioning clustering are combined for outlier detection. In this scheme partitioning clustering is also used to assign weights to attributes depending upon their respective relevance and weights are adaptive. Weighted attributes are helpful to reduce or remove the effect of noisy attributes. Keeping in view the challenges of streaming data, the proposed scheme is incremental and adaptive to concept evolution. Experimental results on synthetic and real world data sets show that our proposed approach outperforms other existing approach (CORM) in terms of outlier detection rate, false alarm rate, and increasing percentages of outliers.
Keywords: Concept Evolution, Irrelevant Attributes, Streaming Data, Unsupervised Outlier Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26372034 A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images
Authors: H. Dujmic, V. Papic, H. Turic
Abstract:
The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method.Keywords: Landscape surveillance, mean shift algorithm, image segmentation, target detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972033 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.
Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20782032 A New Face Detection Technique using 2D DCT and Self Organizing Feature Map
Authors: Abdallah S. Abdallah, A. Lynn Abbott, Mohamad Abou El-Nasr
Abstract:
This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.Keywords: Face detection, skin color segmentation, self-organizingmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25432031 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.
Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9732030 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.
Keywords: Neural networks, motion detection, signature detection, convolutional neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692029 Highly Efficient Silicon Photomultiplier for Positron Emission Tomography Application
Authors: Fei Sun, Ning Duan, Guo-Qiang Lo
Abstract:
A silicon photomultiplier (SiPM) was designed, fabricated and characterized. The SiPM was based on SACM (Separation of Absorption, Charge and Multiplication) structure, which was optimized for blue light detection in application of positron emission tomography (PET). The achieved SiPM array has a high geometric fill factor of 64% and a low breakdown voltage of about 22V, while the temperature dependence of breakdown voltage is only 17mV/°C. The gain and photon detection efficiency of the device achieved were also measured under illumination of light at 405nm and 460nm wavelengths. The gain of the device is in the order of 106. The photon detection efficiency up to 60% has been observed under 1.8V overvoltage.
Keywords: Photon Detection Efficiency, Positron Emission Tomography, Silicon Photomultiplier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382028 Distributed Detection and Optimal Traffic-blocking of Network Worms
Authors: Zoran Nikoloski, Narsingh Deo, Ludek Kucera
Abstract:
Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.Keywords: Network worms, distributed detection, optimaltraffic-blocking, individual-based simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14382027 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: Color overlapping windows, image stitching, leukocyte detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922026 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement
Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta
Abstract:
Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25812025 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: Computing methodologies, interest point, salient region detections, image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865