Search results for: features of speech
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1754

Search results for: features of speech

1574 Face Localization Using Illumination-dependent Face Model for Visual Speech Recognition

Authors: Robert E. Hursig, Jane X. Zhang

Abstract:

A robust still image face localization algorithm capable of operating in an unconstrained visual environment is proposed. First, construction of a robust skin classifier within a shifted HSV color space is described. Then various filtering operations are performed to better isolate face candidates and mitigate the effect of substantial non-skin regions. Finally, a novel Bhattacharyya-based face detection algorithm is used to compare candidate regions of interest with a unique illumination-dependent face model probability distribution function approximation. Experimental results show a 90% face detection success rate despite the demands of the visually noisy environment.

Keywords: Audio-visual speech recognition, Bhattacharyyacoefficient, face detection,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1573 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1572 Assessment of the Occupancy’s Effect on Speech Intelligibility in Al-Madinah Holy Mosque

Authors: Wasim Orfali, Hesham Tolba

Abstract:

This research investigates the acoustical characteristics of Al-Madinah Holy Mosque. Extensive field measurements were conducted in different locations of Al-Madinah Holy Mosque to characterize its acoustic characteristics. The acoustical characteristics are usually evaluated by the use of objective parameters in unoccupied rooms due to practical considerations. However, under normal conditions, the room occupancy can vary such characteristics due to the effect of the additional sound absorption present in the room or by the change in signal-to-noise ratio. Based on the acoustic measurements carried out in Al-Madinah Holy Mosque with and without occupancy, and the analysis of such measurements, the existence of acoustical deficiencies has been confirmed.

Keywords: Worship sound, Al-Madinah Holy Mosque, mosque acoustics, speech intelligibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
1571 A Sociolinguistic Study of the Outcomes of Arabic-French Contact in the Algerian Dialect Tlemcen Speech Community as a Case Study

Authors: R. Rahmoun-Mrabet

Abstract:

It is acknowledged that our style of speaking changes according to a wide range of variables such as gender, setting, the age of both the addresser and the addressee, the conversation topic, and the aim of the interaction. These differences in style are noticeable in monolingual and multilingual speech communities. Yet, they are more observable in speech communities where two or more codes coexist. The linguistic situation in Algeria reflects a state of bilingualism because of the coexistence of Arabic and French. Nevertheless, like all Arab countries, it is characterized by diglossia i.e. the concomitance of Modern Standard Arabic (MSA) and Algerian Arabic (AA), the former standing for the ‘high variety’ and the latter for the ‘low variety’. The two varieties are derived from the same source but are used to fulfil distinct functions that is, MSA is used in the domains of religion, literature, education and formal settings. AA, on the other hand, is used in informal settings, in everyday speech. French has strongly affected the Algerian language and culture because of the historical background of Algeria, thus, what can easily be noticed in Algeria is that everyday speech is characterized by code-switching from dialectal Arabic and French or by the use of borrowings. Tamazight is also very present in many regions of Algeria and is the mother tongue of many Algerians. Yet, it is not used in the west of Algeria, where the study has been conducted. The present work, which was directed in the speech community of Tlemcen-Algeria, aims at depicting some of the outcomes of the contact of Arabic with French such as code-switching, borrowing and interference. The question that has been asked is whether Algerians are aware of their use of borrowings or not. Three steps are followed in this research; the first one is to depict the sociolinguistic situation in Algeria and to describe the linguistic characteristics of the dialect of Tlemcen, which are specific to this city. The second one is concerned with data collection. Data have been collected from 57 informants who were given questionnaires and who have then been classified according to their age, gender and level of education. Information has also been collected through observation, and note taking. The third step is devoted to analysis. The results obtained reveal that most Algerians are aware of their use of borrowings. The present work clarifies how words are borrowed from French, and then adapted to Arabic. It also illustrates the way in which singular words inflect into plural. The results expose the main characteristics of borrowing as opposed to code-switching. The study also clarifies how interference occurs at the level of nouns, verbs and adjectives.

Keywords: Bilingualism, borrowing, code-switching, interference, language contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
1570 Road Extraction Using Stationary Wavelet Transform

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a novel road extraction method using Stationary Wavelet Transform is proposed. To detect road features from color aerial satellite imagery, Mexican hat Wavelet filters are used by applying the Stationary Wavelet Transform in a multiresolution, multi-scale, sense and forming the products of Wavelet coefficients at a different scales to locate and identify road features at a few scales. In addition, the shifting of road features locations is considered through multiple scales for robust road extraction in the asymmetry road feature profiles. From the experimental results, the proposed method leads to a useful technique to form the basis of road feature extraction. Also, the method is general and can be applied to other features in imagery.

Keywords: Road extraction, Multiresolution, Stationary Wavelet Transform, Multi-scale analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1569 Automatic Voice Classification System Based on Traditional Korean Medicine

Authors: Jaehwan Kang, Haejung Lee

Abstract:

This paper introduces an automatic voice classification system for the diagnosis of individual constitution based on Sasang Constitutional Medicine (SCM) in Traditional Korean Medicine (TKM). For the developing of this algorithm, we used the voices of 309 female speakers and extracted a total of 134 speech features from the voice data consisting of 5 sustained vowels and one sentence. The classification system, based on a rule-based algorithm that is derived from a non parametric statistical method, presents 3 types of decisions: reserved, positive and negative decisions. In conclusion, 71.5% of the voice data were diagnosed by this system, of which 47.7% were correct positive decisions and 69.7% were correct negative decisions.

Keywords: Voice Classifier, Sasang Constitution Medicine, Traditional Korean Medicine, SCM, TKM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
1568 Improved Feature Processing for Iris Biometric Authentication System

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.

Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
1567 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
1566 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1565 Decision Tree-based Feature Ranking using Manhattan Hierarchical Cluster Criterion

Authors: Yasmin Mohd Yacob, Harsa A. Mat Sakim, Nor Ashidi Mat Isa

Abstract:

Feature selection study is gaining importance due to its contribution to save classification cost in terms of time and computation load. In search of essential features, one of the methods to search the features is via the decision tree. Decision tree act as an intermediate feature space inducer in order to choose essential features. In decision tree-based feature selection, some studies used decision tree as a feature ranker with a direct threshold measure, while others remain the decision tree but utilized pruning condition that act as a threshold mechanism to choose features. This paper proposed threshold measure using Manhattan Hierarchical Cluster distance to be utilized in feature ranking in order to choose relevant features as part of the feature selection process. The result is promising, and this method can be improved in the future by including test cases of a higher number of attributes.

Keywords: Feature ranking, decision tree, hierarchical cluster, Manhattan distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
1564 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: Blood pressure, noninvasive optical system, PCA, continuous monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
1563 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: Terrain classification, acoustic features, autonomous robots, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
1562 An Efficient Obstacle Detection Algorithm Using Colour and Texture

Authors: Chau Nguyen Viet, Ian Marshall

Abstract:

This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.

Keywords: Colour, texture, classification, obstacle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
1561 Assessment of In-Situ Water Sensitive Urban Design Elements

Authors: Niranjali Jayasuirya, Majell Backhausen

Abstract:

Water Sensitive Urban Design (WSUD) features are increasingly used to treat and manage polluted stormwater runoff in urbanised areas. It is important to monitor and evaluate the effectiveness of the infrastructure in achieving their intended performance targets after constructing and operating these features overtime. The paper presents the various methods of analysis used to assess the effectiveness of the in-situ WSUD features, such as: onsite visual inspections during operational and non operational periods, maintenance audits and periodic water quality testing. The results will contribute to a better understanding of the operational and maintenance needs of in-situ WSUD features and assist in providing recommendations to better manage life cycle performance.

Keywords: Bio-retention swales, Maintenance plan, Operational plan, Water Sensitive Urban Design, Water quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
1560 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System

Authors: Shahram Mohammadi, Ali Frajzadeh

Abstract:

A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.

Keywords: Matching, Minutiae, Reference point, Reference orientation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
1559 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
1558 Tele-Operated Anthropomorphic Arm and Hand Design

Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai

Abstract:

In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.

Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
1557 Human Verification in a Video Surveillance System Using Statistical Features

Authors: Sanpachai Huvanandana

Abstract:

A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.

Keywords: Human verification, object recognition, videounderstanding, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1556 A New Internal Architecture Based on Feature Selection for Holonic Manufacturing System

Authors: Jihan Abdulazeez Ahmed, Adnan Mohsin Abdulazeez Brifcani

Abstract:

This paper suggests a new internal architecture of holon based on feature selection model using the combination of Bees Algorithm (BA) and Artificial Neural Network (ANN). BA is used to generate features while ANN is used as a classifier to evaluate the produced features. Proposed system is applied on the Wine dataset, the statistical result proves that the proposed system is effective and has the ability to choose informative features with high accuracy.

Keywords: Artificial Neural Networks, Holonic Approach, Feature Selection, Bee Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
1555 Multi-algorithmic Iris Authentication System

Authors: Hunny Mehrotra, Banshidhar Majhi, Phalguni Gupta

Abstract:

The paper proposes a novel technique for iris recognition using texture and phase features. Texture features are extracted on the normalized iris strip using Haar Wavelet while phase features are obtained using LOG Gabor Wavelet. The matching scores generated from individual modules are combined using sum of score technique. The system is tested on database obtained from Bath University and Indian Institute of Technology Kanpur and is giving an accuracy of 95.62% and 97.66% respectively. The FAR and FRR of the combined system is also reduced comparatively.

Keywords: Fusion, Haar Wavelet, Iris, LOG Gabor Wavelet, Phase, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1554 Identification of Printed Punjabi Words and English Numerals Using Gabor Features

Authors: Rajneesh Rani, Renu Dhir, G. S. Lehal

Abstract:

Script identification is one of the challenging steps in the development of optical character recognition system for bilingual or multilingual documents. In this paper an attempt is made for identification of English numerals at word level from Punjabi documents by using Gabor features. The support vector machine (SVM) classifier with five fold cross validation is used to classify the word images. The results obtained are quite encouraging. Average accuracy with RBF kernel, Polynomial and Linear Kernel functions comes out to be greater than 99%.

Keywords: Script identification, gabor features, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
1553 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1552 On a Pitch Duration Technique for Prosody Control

Authors: JongKuk Kim, HernSoo Hahn, Uei-Joong Yoo, MyungJin Bae

Abstract:

In this paper, we propose a method of alter duration in frequency domain that control prosody in real time after pitch alteration. If there has a method to alteration duration freely among prosody information, that may used in several fields such as speech impediment person's pronunciation proof reading or language study. The pitch alteration method used control prosody altered by PSOLA synthesis method which is in time domain processing method. However, the duration of pitch alteration speech is changed by the frequency domain. In this paper, we altered the duration with the method of duration alteration by Fast Fourier Transformation in frequency domain. Consequently, the intelligibility of the pitch and duration are controlled has a slight decrease than the case when only pitch is changed, but the proposed algorithm obtained the higher MOS score about naturalness.

Keywords: PSOLA, Pitch Alteration, Duration Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
1551 Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail, Deo Prasad

Abstract:

In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.

Keywords: Green homes, Malaysia, Sustainable BuildingCriteria, Sustainable homes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
1550 Fast Facial Feature Extraction and Matching with Artificial Face Models

Authors: Y. H. Tsai, Y. W. Chen

Abstract:

Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.

Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1549 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
1548 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1547 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System

Authors: M. L. Anitha, K. A. Radhakrishna Rao

Abstract:

With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.

Keywords: Biometrics, hand geometry features, inner knuckle print, recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
1546 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1545 DHT-LMS Algorithm for Sensorineural Loss Patients

Authors: Sunitha S. L., V. Udayashankara

Abstract:

Hearing impairment is the number one chronic disability affecting many people in the world. Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Hartley Transform Power Normalized Least Mean Square algorithm (DHT-LMS) to improve the SNR and to reduce the convergence rate of the Least Means Square (LMS) for sensorineural loss patients. The DHT transforms n real numbers to n real numbers, and has the convenient property of being its own inverse. It can be effectively used for noise cancellation with less convergence time. The simulated result shows the superior characteristics by improving the SNR at least 9 dB for input SNR with zero dB and faster convergence rate (eigenvalue ratio 12) compare to time domain method and DFT-LMS.

Keywords: Hearing Impairment, DHT-LMS, Convergence rate, SNR improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725