Search results for: learning difficulties.
454 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735453 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: A. Althobaiti, M. Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.
Keywords: Communication, effective information exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609452 The Code-Mixing of Japanese, English and Thai in Line Chat
Authors: Premvadee Na Nakornpanom
Abstract:
Code- mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study is an attempt to explore the linguistic characteristics of the mixing of Japanese, English and Thai in a mobile Line chat room by students with their background of English as L2, Japanese as L3 and Thai as mother tongue. The result found that insertion of Thai content words is a very common linguistic phenomenon embedded with the other two languages in the sentences. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotionally-related. A personal pronoun in Japanese is often mixed into the sentences. The Japanese sentence-final question particle か “ka” was added to the end of the sentence based on Thai grammar rules. Some unique characteristics were created while chatting.
Keywords: Code-mixing, Japanese, English, Thai, Line chat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448451 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060450 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012449 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734448 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877447 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA
Authors: Beata Wentura-Dudek
Abstract:
In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.
Keywords: United States, financial crisis, unemployment, employment promotion, social media, job creation, training, labour market, employment agencies, lifelong learning, job search assistance, subsidized employment, companies, tax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752446 Power Distance and Knowledge Management from a Post-Taylorist Perspective
Authors: John Walton, Vishal Parikh
Abstract:
Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.
Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867445 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431444 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks
Authors: Peyman Shadman Heidari, Mohammad Khorasani
Abstract:
The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.
Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832443 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936442 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648441 Legal Education as Forming Factor of Legal Culture in Kazakhstan Modern Society
Authors: M. Karassartova, D. Shormanbayeva, A. Beissenova, S.Balshikeyev
Abstract:
Forming a legal culture among citizens is a complicated and lengthy process, influencing all spheres of social life. It includes promoting justice, learning rights and duties, the introduction of juridical norms and knowledge, and also a process of developing a system of legal acts and constitutional norms. Currently, the evaluative and emotional influence of attempts to establish a legal culture among the citizens of Kazakhstan is limited by real legal practice. As a result, the values essential to a sound civil society are absent from the consciousness of the Kazakh people who are thus, in turn, not able to develop respect for these values. One of the disadvantages of the modern Kazakh educational system is a tendency to underrate the actual forces shaping the worldview of Kazakh youths. The mass-media, which are going through a personnel crisis, cannot provide society with the legal and political information necessary to form the sort of legal culture required for a true civil society.Keywords: Kazakhstan society, Legal education, legal culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941440 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989439 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work
Authors: O. Lasaga
Abstract:
Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.
Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910438 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.
Keywords: Degree, initial cluster center, k-means, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552437 Design of Collaborative Web System: Based on Case Study of PBL Support Systems
Authors: Kawai Nobuaki
Abstract:
This paper describes the design and implementation of web system for continuable and viable collaboration. This study proposes the improvement of the system based on a result of a certain practice. As contemporary higher education information environments transform, this study highlights the significance of university identity and college identity that are formed continuously through independent activities of the students. Based on these discussions, the present study proposes a practical media environment design which facilitates the processes of organizational identity formation based on a continuous and cyclical model. Even if users change by this system, the communication system continues operation and cooperation. The activity becomes the archive and produces new activity. Based on the result, this study elaborates a plan with a re-design by a system from the viewpoint of second-order cybernetics. Systems theory is a theoretical foundation for our study.Keywords: Collaborative work, learning management system, second-order cybernetics, systems theory, user generated contents, viable system model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903436 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.
Keywords: Cross-language analysis, machine learning, machine translation, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666435 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143434 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.
Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919433 Vr-GIS and Ar-GIS In Education: A Case Study
Authors: Ilario Gabriele Gerloni, Vincenza Carchiolo, Alessandro Longheu, Ugo Becciani, Eva Sciacca, Fabio Vitello
Abstract:
ICT tools and platforms endorse more and more educational process. Many models and techniques for people to be educated and trained about specific topics and skills do exist, as classroom lectures with textbooks, computers, handheld devices and others. The choice to what extent ICT is applied within learning contexts is related to personal access to technologies as well as to the infrastructure surrounding environment. Among recent techniques, the adoption of Virtual Reality (VR) and Augmented Reality (AR) provides significant impulse in fully engaging users senses. In this paper, an application of AR/VR within Geographic Information Systems (GIS) context is presented. It aims to provide immersive environment experiences for educational and training purposes (e.g. for civil protection personnel), useful especially for situations where real scenarios are not easily accessible by humans. First acknowledgments are promising for building an effective tool that helps civil protection personnel training with risk reduction.Keywords: Education, virtual reality, augmented reality, civil protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 929432 The Design of Picture Books for Children from Tales of Amphawa Fireflies
Authors: Marut Pichetvit
Abstract:
The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.
Keywords: Children’s illustrated book, Fireflies, Amphawa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319431 Using Weblog to Promote Critical Thinking – An Exploratory Study
Authors: Huay Lit Woo, Qiyun Wang
Abstract:
Weblog is an Internet tool that is believed to possess great potential to facilitate learning in education. This study wants to know if weblog can be used to promote students- critical thinking. It used a group of secondary two students from a Singapore school to write weblogs as a means of substitution for their traditional handwritten assignments. The topics for the weblogging are taken from History syllabus but modified to suit the purpose of this study. Weblogs from the students were collected and analysed using a known coding system for measuring critical thinking. Results show that the topic for blogging is crucial in determining the types of critical thinking employed by the students. Students are seen to display critical thinking traits in the areas of information sourcing, linking information to arguments and viewpoints justification. Students- criticalness is more profound when the information for writing a topic is readily available. Otherwise, they tend to be less critical and subjective. The study also found that students lack the ability to source for external information suggesting that students may need to be taught information literacy in order to widen their use of critical thinking skills.Keywords: Affordance, blog, critical thinking, perception, weblog.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171430 LMS in Higher Education: Analysis of the Effect of a Critical Factor ‘Faculty Training’
Authors: Pedro Barbosa Cabral, Neuza Pedro, Ana Mafalda Gonçalves
Abstract:
The purpose of this research is the analysis of the impact of ICT-related training in the adoption of a learning management systems (LMS) for teaching practicesby faculties in a higher education institution. Based on comparative analyses the impact will be obtained by the number of LMS courses created and managed by participants in ICT for teaching workshops and those who have not attended to any workshops. Involving near 1320 LMS courses and 265 faculties, the results evidence that(i) faculties who have not attend any workshop present a larger distribution of empty courses and (ii) faculties who have attended three or more workshops managed a higher distribution of courses with a considerable level of use intensity, when compared to the others groups. These findings supportthe idea that faculty training is a crucial factor in the process of LMS integration in higher education institutions and that faculties who have been enrolled in three or more workshops develop a higher level of technical and pedagogical proficiency in LMS.Keywords: Higher Education, Faculty Training, LMS, Comparative Analyses
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529429 Evaluating some Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).
Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538428 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.
Keywords: Landslide, limit analysis, ANN, soil properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207427 Deriving Causal Explanation from Qualitative Model Reasoning
Authors: Alicia Y. C. Tang, Sharifuddin M. Zain, Noorsaadah A. Rahman, Rukaini Abdullah
Abstract:
This paper discusses a qualitative simulator QRiOM that uses Qualitative Reasoning (QR) technique, and a process-based ontology to model, simulate and explain the behaviour of selected organic reactions. Learning organic reactions requires the application of domain knowledge at intuitive level, which is difficult to be programmed using traditional approach. The main objective of QRiOM is to help learners gain a better understanding of the fundamental organic reaction concepts, and to improve their conceptual comprehension on the subject by analyzing the multiple forms of explanation generated by the software. This paper focuses on the generation of explanation based on causal theories to explicate various phenomena in the chemistry subject. QRiOM has been tested with three classes problems related to organic chemistry, with encouraging results. This paper also presents the results of preliminary evaluation of QRiOM that reveal its explanation capability and usefulness.Keywords: Artificial intelligence, explanation, ontology, organicreactions, qualitative reasoning, QPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648426 Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction
Authors: Enas M. F. El Houby, Marwa S. Hassan
Abstract:
Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.
Keywords: Associative Classification, Data mining, Decision tree, HCV, interferon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899425 Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind
Authors: Chantana Insra
Abstract:
The research “Buddha Images in Mudras Representing Days of a Week: Tactile Texture Design for the Blind” aims to provide original tactile format to institutions for the blind, as supplementary textbooks, to accumulate Buddhist knowledge, so that it could be extracurricular learning. The research studied on 33 students with both total and partial blindness, the latter with the ability to read Braille’s signs, of elementary 4 – 6, who are pursuing their studies on the second semester of the academic year 2013 at Bangkok School for the Blind. The researcher opted samples specifically, studied data acquired from both documents and fieldworks. Those methods must be related to the blind, tactile format production, and Buddha images in mudras representing days of a week. Afterwards, the formats will be analyzed and designed so that there would be 8 format pictures of Buddha images in mudras representing days of the week. Experts will next evaluate the media and try out.
Keywords: Blind, tactile texture, Thai Buddha images in Mudras representing days of the week.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319