Search results for: misinformation detection.
1377 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.
Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9731376 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.
Keywords: Neural networks, motion detection, signature detection, convolutional neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691375 Highly Efficient Silicon Photomultiplier for Positron Emission Tomography Application
Authors: Fei Sun, Ning Duan, Guo-Qiang Lo
Abstract:
A silicon photomultiplier (SiPM) was designed, fabricated and characterized. The SiPM was based on SACM (Separation of Absorption, Charge and Multiplication) structure, which was optimized for blue light detection in application of positron emission tomography (PET). The achieved SiPM array has a high geometric fill factor of 64% and a low breakdown voltage of about 22V, while the temperature dependence of breakdown voltage is only 17mV/°C. The gain and photon detection efficiency of the device achieved were also measured under illumination of light at 405nm and 460nm wavelengths. The gain of the device is in the order of 106. The photon detection efficiency up to 60% has been observed under 1.8V overvoltage.
Keywords: Photon Detection Efficiency, Positron Emission Tomography, Silicon Photomultiplier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17381374 Distributed Detection and Optimal Traffic-blocking of Network Worms
Authors: Zoran Nikoloski, Narsingh Deo, Ludek Kucera
Abstract:
Despite the recent surge of research in control of worm propagation, currently, there is no effective defense system against such cyber attacks. We first design a distributed detection architecture called Detection via Distributed Blackholes (DDBH). Our novel detection mechanism could be implemented via virtual honeypots or honeynets. Simulation results show that a worm can be detected with virtual honeypots on only 3% of the nodes. Moreover, the worm is detected when less than 1.5% of the nodes are infected. We then develop two control strategies: (1) optimal dynamic trafficblocking, for which we determine the condition that guarantees minimum number of removed nodes when the worm is contained and (2) predictive dynamic traffic-blocking–a realistic deployment of the optimal strategy on scale-free graphs. The predictive dynamic traffic-blocking, coupled with the DDBH, ensures that more than 40% of the network is unaffected by the propagation at the time when the worm is contained.Keywords: Network worms, distributed detection, optimaltraffic-blocking, individual-based simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371373 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: Color overlapping windows, image stitching, leukocyte detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921372 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement
Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta
Abstract:
Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25811371 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: Computing methodologies, interest point, salient region detections, image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8651370 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.
Keywords: Adaptive estimation, fault detection, GNSS, residual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25551369 Motion-Based Detection and Tracking of Multiple Pedestrians
Authors: A. Harras, A. Tsuji, K. Terada
Abstract:
Tracking of moving people has gained a matter of great importance due to rapid technological advancements in the field of computer vision. The objective of this study is to design a motion based detection and tracking multiple walking pedestrians randomly in different directions. In our proposed method, Gaussian mixture model (GMM) is used to determine moving persons in image sequences. It reacts to changes that take place in the scene like different illumination; moving objects start and stop often, etc. Background noise in the scene is eliminated through applying morphological operations and the motions of tracked people which is determined by using the Kalman filter. The Kalman filter is applied to predict the tracked location in each frame and to determine the likelihood of each detection. We used a benchmark data set for the evaluation based on a side wall stationary camera. The actual scenes from the data set are taken on a street including up to eight people in front of the camera in different two scenes, the duration is 53 and 35 seconds, respectively. In the case of walking pedestrians in close proximity, the proposed method has achieved the detection ratio of 87%, and the tracking ratio is 77 % successfully. When they are deferred from each other, the detection ratio is increased to 90% and the tracking ratio is also increased to 79%.
Keywords: Automatic detection, tracking, pedestrians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261368 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9411367 Proactive Detection of DDoS Attacks Utilizing k-NN Classifier in an Anti-DDos Framework
Authors: Hoai-Vu Nguyen, Yongsun Choi
Abstract:
Distributed denial-of-service (DDoS) attacks pose a serious threat to network security. There have been a lot of methodologies and tools devised to detect DDoS attacks and reduce the damage they cause. Still, most of the methods cannot simultaneously achieve (1) efficient detection with a small number of false alarms and (2) real-time transfer of packets. Here, we introduce a method for proactive detection of DDoS attacks, by classifying the network status, to be utilized in the detection stage of the proposed anti-DDoS framework. Initially, we analyse the DDoS architecture and obtain details of its phases. Then, we investigate the procedures of DDoS attacks and select variables based on these features. Finally, we apply the k-nearest neighbour (k-NN) method to classify the network status into each phase of DDoS attack. The simulation result showed that each phase of the attack scenario is classified well and we could detect DDoS attack in the early stage.Keywords: distributed denial-of-service (DDoS), k-nearestneighbor classifier (k-NN), anti-DDoS framework, DDoS detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33421366 Face Tracking using a Polling Strategy
Authors: Rodrigo Montufar-Chaveznava
Abstract:
The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.Keywords: Tracking, face detection, image processing, colorspaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15781365 A New Fast Skin Color Detection Technique
Authors: Tarek M. Mahmoud
Abstract:
Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40031364 Tool for Fast Detection of Java Code Snippets
Authors: Tomáš Bublík, Miroslav Virius
Abstract:
This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and subgraph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.
Keywords: AST, Java, tree matching, Scripthon, source code recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581363 Parallel Priority Region Approach to Detect Background
Authors: Sallama Athab, Hala Bahjat, Zhang Yinghui
Abstract:
Background detection is essential in video analyses; optimization is often needed in order to achieve real time calculation. Information gathered by dual cameras placed in the front and rear part of an Autonomous Vehicle (AV) is integrated for background detection. In this paper, real time calculation is achieved on the proposed technique by using Priority Regions (PR) and Parallel Processing together where each frame is divided into regions then and each region process is processed in parallel. PR division depends upon driver view limitations. A background detection system is built on the Temporal Difference (TD) and Gaussian Filtering (GF). Temporal Difference and Gaussian Filtering with multi threshold and sigma (weight) value are be based on PR characteristics. The experiment result is prepared on real scene. Comparison of the speed and accuracy with traditional background detection techniques, the effectiveness of PR and parallel processing are also discussed in this paper.
Keywords: Autonomous Vehicle, Background Detection, Dual Camera, Gaussian Filtering, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971362 Research on the Influence of Emotional Labor Strategy used by Public Transportation Employee on Service Satisfaction
Authors: Ming-Hsiung Wu, Yu-Hsi Yuan
Abstract:
The aim of the research is to understand whether the accuracy of customer detection of employee emotional labor strategy would influence the overall service satisfaction. From path analysis, it was found that employee-s positive emotions positively influenced service quality. Service quality in turn influenced Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy. Lastly, Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy positively influenced service satisfaction. Based on the analysis results, suggestions are proposed to provide reference for human resource management and use in relative fields.
Keywords: Emotional labor, Emotional deep action strategy, Emotional surface action strategy, Service satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951361 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.
Keywords: Industrial control systems, prey predator, SCADA, SDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741360 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier
Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat
Abstract:
Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.Keywords: Arrhythmic beat detection, ECG, HRV, kNN classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611359 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: Chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201358 Driver Fatigue State Recognition with Pixel Based Caveat Scheme Using Eye-Tracking
Authors: K. Thulasimani, K. G. Srinivasagan
Abstract:
Driver fatigue is an important factor in the increasing number of road accidents. Dynamic template matching method was proposed to address the problem of real-time driver fatigue detection system based on eye-tracking. An effective vision based approach was used to analyze the driver’s eye state to detect fatigue. The driver fatigue system consists of Face detection, Eye detection, Eye tracking, and Fatigue detection. Initially frames are captured from a color video in a car dashboard and transformed from RGB into YCbCr color space to detect the driver’s face. Canny edge operator was used to estimating the eye region and the locations of eyes are extracted. The extracted eyes were considered as a template matching for eye tracking. Edge Map Overlapping (EMO) and Edge Pixel Count (EPC) matching function were used for eye tracking which is used to improve the matching accuracy. The pixel of eyeball was tracked from the eye regions which are used to determine the fatigue state of the driver.Keywords: Driver fatigue detection, Driving safety, Eye tracking, Intelligent transportation system, Template matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271357 Hand Gesture Detection via EmguCV Canny Pruning
Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae
Abstract:
Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.
Keywords: Canny pruning, hand recognition, machine learning, skin tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13081356 An Efficient Fall Detection Method for Elderly Care System
Authors: S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
Fall detection is one of the challenging problems in elderly care system. The objective of this paper is to identify falls in elderly care system. In this paper, an efficient fall detection method is proposed to identify falls using correlation factor and Motion History Image (MHI). The proposed method is tested on URF (University of Rzeszow Fall detection) dataset and evaluated with some efficient measures like sensitivity, specificity, precision and classification accuracy. It is compared with other recent methods. The experimental results substantially proved that the proposed method achieves 1.5% higher sensitivity when compared to other methods.Keywords: Pearson correlation coefficient, motion history image, human shape identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8351355 Object Detection based Weighted-Center Surround Difference
Authors: Seung-Hun Kim, Kye-Hoon Jeon, Byoung-Doo Kang, I1-Kyun Jung
Abstract:
Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.Keywords: Saliency Map, Center Surround Difference, Object Detection, Surveillance System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361354 EEG Spikes Detection, Sorting, and Localization
Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah
Abstract:
This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25481353 Bleeding Detection Algorithm for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Automatic detection of bleeding is of practical importance since capsule endoscopy produces an extremely large number of images. Algorithm development of bleeding detection in the digestive tract is difficult due to different contrasts among the images, food dregs, secretion and others. In this study, were assigned weighting factors derived from the independent features of the contrast and brightness between bleeding and normality. Spectral analysis based on weighting factors was fast and accurate. Results were a sensitivity of 87% and a specificity of 90% when the accuracy was determined for each pixel out of 42 endoscope images.Keywords: bleeding, capsule endoscopy, image analysis, weighted spectrum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171352 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)
Authors: Yacine Ait Ali Yahia, Abderazak Guessoum
Abstract:
In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851351 Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents
Authors: Amer Dawoud, Rashid Mia, Arati Biswakarma, Jesy Motchaalangaram, Wujan Miao, Karl Wallace
Abstract:
The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWAs) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.
Keywords: Drone-based, remote detection chemical warfare agents, miniaturized, potentiostat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5261350 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban remote sensing is the detection of impervious surfaces (IS), such as roofs and roads. However, detection of IS in heterogeneous areas still remains one of the most challenging tasks. In this study, detection of concrete roof using an object-based approach was proposed. A new rule-based classification was developed to detect concrete roof tile. This proposed rule-based classification was applied to WorldView-2 image and results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images, with 85% accuracy.
Keywords: Urban remote sensing, impervious surface, Object- Based, Roof Material, Concrete tile, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37931349 A Trends Analysis of Image Processing in Unmanned Aerial Vehicle
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of domestic and international trends of image processing for data in UAV (unmanned aerial vehicle) and also explains about UAV and Quadcopter. Overseas examples of image processing using UAV include image processing for totaling the total numberof vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT(scale invariant features transform) matching, and application of median filter and thresholding. In Korea, many studies are underway including visualization of new urban buildings.
Keywords: Image Processing, UAV, Quadcopter, Target detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76741348 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water
Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman
Abstract:
The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.
Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267