Search results for: Spatial temporal data mining
8003 A Hybrid Approach for Quantification of Novelty in Rule Discovery
Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar
Abstract:
Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.
Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13548002 Exploring Performance-Based Music Attributes for Stylometric Analysis
Authors: Abdellghani Bellaachia, Edward Jimenez
Abstract:
Music Information Retrieval (MIR) and modern data mining techniques are applied to identify style markers in midi music for stylometric analysis and author attribution. Over 100 attributes are extracted from a library of 2830 songs then mined using supervised learning data mining techniques. Two attributes are identified that provide high informational gain. These attributes are then used as style markers to predict authorship. Using these style markers the authors are able to correctly distinguish songs written by the Beatles from those that were not with a precision and accuracy of over 98 per cent. The identification of these style markers as well as the architecture for this research provides a foundation for future research in musical stylometry.
Keywords: Music Information Retrieval, Music Data Mining, Stylometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16808001 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38118000 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6397999 Spatial Variability in Human Development Patterns in Assiut, Egypt
Authors: Abdel-Samad M. Ali
Abstract:
Given the motivation of maps impact in enhancing the perception of the quality of life in a region, this work examines the use of spatial analytical techniques in exploring the role of space in shaping human development patterns in Assiut governorate. Variations of human development index (HDI) of the governorate-s villages, districts and cities are mapped using geographic information systems (GIS). Global and local spatial autocorrelation measures are employed to assess the levels of spatial dependency in the data and to map clusters of human development. Results show prominent disparities in HDI between regions of Assiut. Strong patterns of spatial association were found proving the presence of clusters on the distribution of HDI. Finally, the study indicates several "hot-spots" in the governorate to be area of more investigations to explore the attributes of such levels of human development. This is very important for accomplishing the development plan of poorest regions currently adopted in Egypt.Keywords: Human development, Egypt, GIS, Spatial analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24457998 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology
Authors: Ines Hamdi, Mohamed Ben Ahmed
Abstract:
The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower
Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14857997 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Authors: Harpreet Singh
Abstract:
Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.
Keywords: Web usage mining, log file, web mining, data mining, deep log analyser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10627996 Application of Data Mining Tools to Predicate Completion Time of a Project
Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari
Abstract:
Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18037995 About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels
Authors: M. Moistsrapishvili, I. Ugrekhelidze, T. Baramashvili, D. Malaghuradze
Abstract:
At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.Keywords: Mining pressure, Reconstruction of tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16777994 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.
Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21327993 Decision Support System Based on Data Warehouse
Authors: Yang Bao, LuJing Zhang
Abstract:
Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.
Keywords: Decision Support System, Data Warehouse, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38637992 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining
Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri
Abstract:
This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.
Keywords: Motivation behavior, e-learning, moodle log, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18877991 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22787990 Improving the Performance of Proxy Server by Using Data Mining Technique
Authors: P. Jomsri
Abstract:
Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.
Keywords: Association rule, proxy server, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30627989 Questions Categorization in E-Learning Environment Using Data Mining Technique
Authors: Vilas P. Mahatme, K. K. Bhoyar
Abstract:
Nowadays, education cannot be imagined without digital technologies. It broadens the horizons of teaching learning processes. Several universities are offering online courses. For evaluation purpose, e-examination systems are being widely adopted in academic environments. Multiple-choice tests are extremely popular. Moving away from traditional examinations to e-examination, Moodle as Learning Management Systems (LMS) is being used. Moodle logs every click that students make for attempting and navigational purposes in e-examination. Data mining has been applied in various domains including retail sales, bioinformatics. In recent years, there has been increasing interest in the use of data mining in e-learning environment. It has been applied to discover, extract, and evaluate parameters related to student’s learning performance. The combination of data mining and e-learning is still in its babyhood. Log data generated by the students during online examination can be used to discover knowledge with the help of data mining techniques. In web based applications, number of right and wrong answers of the test result is not sufficient to assess and evaluate the student’s performance. So, assessment techniques must be intelligent enough. If student cannot answer the question asked by the instructor then some easier question can be asked. Otherwise, more difficult question can be post on similar topic. To do so, it is necessary to identify difficulty level of the questions. Proposed work concentrate on the same issue. Data mining techniques in specific clustering is used in this work. This method decide difficulty levels of the question and categories them as tough, easy or moderate and later this will be served to the desire students based on their performance. Proposed experiment categories the question set and also group the students based on their performance in examination. This will help the instructor to guide the students more specifically. In short mined knowledge helps to support, guide, facilitate and enhance learning as a whole.Keywords: Data mining, e-examination, e-learning, moodle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20757988 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54317987 Elimination of Redundant Links in Web Pages– Mathematical Approach
Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi
Abstract:
With the enormous growth on the web, users get easily lost in the rich hyper structure. Thus developing user friendly and automated tools for providing relevant information without any redundant links to the users to cater to their needs is the primary task for the website owners. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent one that are likely to contain the outlying data such as noise, irrelevant and redundant data. This paper proposes new algorithm for mining the web content by detecting the redundant links from the web documents using set theoretical(classical mathematics) such as subset, union, intersection etc,. Then the redundant links is removed from the original web content to get the required information by the user..Keywords: Web documents, Web content mining, redundantlink, outliers, set theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20157986 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.Keywords: Data mining, association rule, fuzzy frequent patterngrowth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18007985 Impact of Stack Caches: Locality Awareness and Cost Effectiveness
Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang
Abstract:
Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.
Keywords: Hit rate, Locality of program, Stack cache, and Stack data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15097984 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.
Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9297983 A Temporal QoS Ontology for ERTMS/ETCS
Authors: Marc Sango, Olimpia Hoinaru, Christophe Gransart, Laurence Duchien
Abstract:
Ontologies offer a means for representing and sharing information in many domains, particularly in complex domains. For example, it can be used for representing and sharing information of System Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS written in natural language. Since this system is a real-time and critical system, generic ontologies, such as OWL and generic ERTMS ontologies provide minimal support for modeling temporal information omnipresent in these SRS documents. To support the modeling of temporal information, one of the challenges is to enable representation of dynamic features evolving in time within a generic ontology with a minimal redesign of it. The separation of temporal information from other information can help to predict system runtime operation and to properly design and implement them. In addition, it is helpful to provide a reasoning and querying techniques to reason and query temporal information represented in the ontology in order to detect potential temporal inconsistencies. To address this challenge, we propose a lightweight 3-layer temporal Quality of Service (QoS) ontology for representing, reasoning and querying over temporal and non-temporal information in a complex domain ontology. Representing QoS entities in separated layers can clarify the distinction between the non QoS entities and the QoS entities in an ontology. The upper generic layer of the proposed ontology provides an intuitive knowledge of domain components, specially ERTMS/ETCS components. The separation of the intermediate QoS layer from the lower QoS layer allows us to focus on specific QoS Characteristics, such as temporal or integrity characteristics. In this paper, we focus on temporal information that can be used to predict system runtime operation. To evaluate our approach, an example of the proposed domain ontology for handover operation, as well as a reasoning rule over temporal relations in this domain-specific ontology, are presented.
Keywords: System Requirement Specification, ERTMS/ETCS, Temporal Ontologies, Domain Ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31357982 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: Homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9207981 Study on Landscape Pattern Evolution of Ecological-Living-Industrial Land in Plateau Mountainous Area: A Case Study of Yuxi City, Yunnan Province
Authors: Ying Pan, Li Wu, Jing Zhou, Lan Li
Abstract:
The coordination and development of ecological-living-industrial land uses are the premise foundations for the formulation and implementation of the current land space planning, and more attention should be paid to plateau mountainous areas. This research is based on spatial analysis technology and landscape pattern index method taking Yuxi city, a typical mountainous plateau as the research area. By using relevant software such as ArcGIS10.5, Fragstats 4.2 and the four remote sensing images of Yuxi city in 1980, 1995, 2005 and 2015, the temporal-spatial evolution and differentiation pattern of ecological-living-industrial land applications have been discussed. The research results show that: (1) From the perspective of land use type change, ecological land of Yuxi city has been the main source of land from 1980 to 2015, which totally occupies more than 78%. During this period, the spatial structure of the ecological-living-industrial land changed significantly, namely, the living land. Its land area increased significantly from 0.83% of the total area in 1980 to 1.25% in 2015, the change range of ecological land and industrial land is relatively small. (2) In terms of land use landscape pattern transfer matrix, from 1980 to 2015, the industrial land and ecological land in Yuxi city have been gradually transferred to living land. (3) In the aspect of landscape pattern changes, various landscape pattern indexes of Yuxi city indicate that the fragmentation degree of landscape pattern of the ecological-living-industrial land in this region is increasing. The degree of agglomeration goes down, and the landscape types have changed from being relatively simple to relatively rich. The landscape is more diverse, but the patch size is uneven, meanwhile, the integrity of the ecological space is destroyed.
Keywords: Ecological-living-industrial land, spatio-temporal evolution, landscape pattern, plateau mountainous area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6827980 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66347979 A Text Mining Technique Using Association Rules Extraction
Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey
Abstract:
This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.
Keywords: Text mining, data mining, association rule mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44397978 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm
Authors: Bilal Alatas, Ahmet Arslan
Abstract:
The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.
Keywords: Classification rule mining, data mining, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15947977 Educational Values of Virtual Reality: The Case of Spatial Ability
Authors: Elinda Ai-Lim Lee, Kok Wai Wong, Chun Che Fung
Abstract:
The use of Virtual Reality (VR) in schools and higher education is proliferating. Due to its interactive and animated features, it is regarded as a promising technology to increase students- spatial ability. Spatial ability is assumed to have a prominent role in science and engineering domains. However, research concerning individual differences such as spatial ability in the context of VR is still at its infancy. Moreover, empirical studies that focus on the features of VR to improve spatial ability are to date rare. Thus, this paper explores the possible educational values of VR in relation to spatial ability to call for more research concerning spatial ability in the context of VR based on studies in computerbased learning. It is believed that the incorporation of state-of-the-art VR technology for educational purposes should be justified by the enhanced benefits for the target learners.
Keywords: Ability-as-compensator, ability-as-enhancer, spatialability, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21987976 LOD Exploitation and Fast Silhouette Detection for Shadow Volumes
Authors: Mustafa S. Fawad, Wang Wencheng, Wu Enhua
Abstract:
Shadows add great amount of realism to a scene and many algorithms exists to generate shadows. Recently, Shadow volumes (SVs) have made great achievements to place a valuable position in the gaming industries. Looking at this, we concentrate on simple but valuable initial partial steps for further optimization in SV generation, i.e.; model simplification and silhouette edge detection and tracking. Shadow volumes (SVs) usually takes time in generating boundary silhouettes of the object and if the object is complex then the generation of edges become much harder and slower in process. The challenge gets stiffer when real time shadow generation and rendering is demanded. We investigated a way to use the real time silhouette edge detection method, which takes the advantage of spatial and temporal coherence, and exploit the level-of-details (LOD) technique for reducing silhouette edges of the model to use the simplified version of the model for shadow generation speeding up the running time. These steps highly reduce the execution time of shadow volume generations in real-time and are easily flexible to any of the recently proposed SV techniques. Our main focus is to exploit the LOD and silhouette edge detection technique, adopting them to further enhance the shadow volume generations for real time rendering.Keywords: LOD, perception, Shadow Volumes, SilhouetteEdge, Spatial and Temporal coherence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16137975 A Sequential Pattern Mining Method Based On Sequential Interestingness
Authors: Shigeaki Sakurai, Youichi Kitahara, Ryohei Orihara
Abstract:
Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge from the patterns. The paper proposes a new criterion, namely, the sequential interestingness, to discover sequential patterns that are more attractive for the analysts. The paper shows that the criterion satisfies the Apriori property and how the criterion is related to the support. Also, the paper proposes an efficient sequential mining method based on the proposed criterion. Lastly, the paper shows the effectiveness of the proposed method by applying the method to two kinds of sequential data.
Keywords: Sequential mining, Support, Confidence, Apriori property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12767974 Concepts Extraction from Discharge Notes using Association Rule Mining
Authors: Basak Oguz Yolcular
Abstract:
A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts.Keywords: association rule mining, otorhinolaryngology, predictive apriori, text mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614