Search results for: decision based artificial neural network.
12080 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems
Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki
Abstract:
This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.
Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309712079 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35112078 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38812077 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm
Authors: M. R. Ghasemi, A. Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163112076 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143512075 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldah, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.
Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61012074 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178712073 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.
Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85512072 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212212071 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314312070 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.
Keywords: Complexity, interbank networks, multilayer networks, network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85112069 Airline Quality Rating Using PARIS and TOPSIS in Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a multiple criteria evaluation analysis for airline quality rating using the preference analysis for reference ideal solution (PARIS) and the technique for order of preference by similarity to ideal solution (TOPSIS) approaches. The airline quality rating was developed as an objective method for assessing airline quality on combined multiple performance criteria and the importance weights of criteria. The selected multiple performance criteria were determined as on-time arrivals, mishandled baggage, involuntary denied boardings, and consumer complaints. The multiple criteria decision making analysis results show that the alternative ( a2) airline is the best-rated airline.
Keywords: airline quality rating, multiple criteria decision making, multiple criteria decision making analysis, entropy weight, MCDMA, PARIS, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58312068 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks
Authors: Manoj Kumar Dutta
Abstract:
Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178812067 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167212066 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167212065 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157612064 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title
Authors: J. Moshtagh, L. Eslami
Abstract:
Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.
Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158112063 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management
Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna
Abstract:
Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187112062 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103412061 The Impact of the Knowledge-Sharing Factors on Improving Decision-Making at Sultan Qaboos University Libraries
Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi
Abstract:
Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the Sultan Qaboos University (SQU) libraries (Main Library, Medical Library, College of Economic and Political Science Library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge sharing positively affects decision making process.
Keywords: Knowledge sharing, decision making, information technology, management support, corroboration, Sultan Qaboos University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15612060 A Product Development for Green Logistics Model by Integrated Evaluation of Design and Manufacturing and Green Supply Chain
Authors: Yuan-Jye Tseng, Yen-Jung Wang
Abstract:
A product development for green logistics model using the fuzzy analytic network process method is presented for evaluating the relationships among the product design, the manufacturing activities, and the green supply chain. In the product development stage, there can be alternative ways to design the detailed components to satisfy the design concept and product requirement. In different design alternative cases, the manufacturing activities can be different. In addition, the manufacturing activities can affect the green supply chain of the components and product. In this research, a fuzzy analytic network process evaluation model is presented for evaluating the criteria in product design, manufacturing activities, and green supply chain. The comparison matrices for evaluating the criteria among the three groups are established. The total relational values between the three groups represent the relationships and effects. In application, the total relational values can be used to evaluate the design alternative cases for decision-making to select a suitable design case and the green supply chain. In this presentation, an example product is illustrated. It shows that the model is useful for integrated evaluation of design and manufacturing and green supply chain for the purpose of product development for green logistics.
Keywords: Supply chain management, green supply chain, product development for logistics, fuzzy analytic network process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224312059 MaxMin Share Based Medium Access for Attaining Fairness and Channel Utilization in Mobile Adhoc Networks
Authors: P. Priakanth, P. Thangaraj
Abstract:
Due to the complex network architecture, the mobile adhoc network-s multihop feature gives additional problems to the users. When the traffic load at each node gets increased, the additional contention due its traffic pattern might cause the nodes which are close to destination to starve the nodes more away from the destination and also the capacity of network is unable to satisfy the total user-s demand which results in an unfairness problem. In this paper, we propose to create an algorithm to compute the optimal MAC-layer bandwidth assigned to each flow in the network. The bottleneck links contention area determines the fair time share which is necessary to calculate the maximum allowed transmission rate used by each flow. To completely utilize the network resources, we compute two optimal rates namely, the maximum fair share and minimum fair share. We use the maximum fair share achieved in order to limit the input rate of those flows which crosses the bottleneck links contention area when the flows that are not allocated to the optimal transmission rate and calculate the following highest fair share. Through simulation results, we show that the proposed protocol achieves improved fair share and throughput with reduced delay.Keywords: MAC-layer, MANETs, Multihop, optimal rate, Transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150912058 Assessing Community Participation in Decision-Making Process under Co-Management: A Case Study on Hail Haor, Bangladesh
Authors: R. Ferdous
Abstract:
Power, responsibility sharing, and democratic decision-making are the central ethos to co-management. It is assumed that involving local community in the decision-making process can create a sense of ownership and responsibility of that community and motivate the community towards collective action. But this paper demonstrated that the process to involve local community is not simple and straightforward as it is influenced by structural aspects, power relations among the actors, and social embedded institutions. These factors shape the process in that way who will participate, how they will participate and how the local community maneuvers their agency in the decision-making process. To grasp the complexities that materialize in the process of participation and to understand the inclusionary and exclusionary nature of participation, this paper examines the subjective understanding of different stakeholders concerning participation and furthermore observes the enabling or constraining factors that affect the community to exercise their agency.
Keywords: Participation, social embeddedness, power, structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168712057 Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks
Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes
Abstract:
This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.
Keywords: Multi-objective, user operation cost, population covered, rural road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183512056 A Hybrid Scheme for on-Line Diagnostic Decision Making Using Optimal Data Representation and Filtering Technique
Authors: Hyun-Woo Cho
Abstract:
The early diagnostic decision making in industrial processes is absolutely necessary to produce high quality final products. It helps to provide early warning for a special event in a process, and finding its assignable cause can be obtained. This work presents a hybrid diagnostic schmes for batch processes. Nonlinear representation of raw process data is combined with classification tree techniques. The nonlinear kernel-based dimension reduction is executed for nonlinear classification decision boundaries for fault classes. In order to enhance diagnosis performance for batch processes, filtering of the data is performed to get rid of the irrelevant information of the process data. For the diagnosis performance of several representation, filtering, and future observation estimation methods, four diagnostic schemes are evaluated. In this work, the performance of the presented diagnosis schemes is demonstrated using batch process data.
Keywords: Diagnostics, batch process, nonlinear representation, data filtering, multivariate statistical approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131712055 Research on User Experience and Brand Attitudes of Chatbots
Authors: Shu-Yin Yu
Abstract:
With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.
Keywords: Brand attitude, chatbot, emotional interaction, user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81712054 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.
Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67812053 Hybrid Multipath Congestion Control
Authors: Akshit Singhal, Xuan Wang, Zhijun Wang, Hao Che, Hong Jiang
Abstract:
Multiple Path Transmission Control Protocols (MPTCPs) allow flows to explore path diversity to improve the throughput, reliability and network resource utilization. However, the existing solutions may discourage users to adopt the solutions in the face of multipath scenario where different paths are charged based on different pricing structures, e.g., WiFi vs. cellular connections, widely available for mobile phones. In this paper, we propose a Hybrid MPTCP (H-MPTCP) with a built-in mechanism to incentivize users to use multiple paths with different pricing structures. In the meantime, H-MPTCP preserves the nice properties enjoyed by the state-of-the-art MPTCP solutions. Extensive real Linux implementation results verify that H-MPTCP can indeed achieve the design objectives.
Keywords: Congestion control, Network Utility Maximization, Multipath TCP, network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38312052 Evaluation of Service Continuity in a Self-organizing IMS
Authors: Satoshi Komorita, Tsunehiko Chiba, Hidetoshi Yokota, Ashutosh Dutta, Christian Makaya, Subir Das, Dana Chee, F. Joe Lin, Henning Schulzrinne
Abstract:
The NGN (Next Generation Network), which can provide advanced multimedia services over an all-IP based network, has been the subject of much attention for years. While there have been tremendous efforts to develop its architecture and protocols, especially for IMS, which is a key technology of the NGN, it is far from being widely deployed. However, efforts to create an advanced signaling infrastructure realizing many requirements have resulted in a large number of functional components and interactions between those components. Thus, the carriers are trying to explore effective ways to deploy IMS while offering value-added services. As one such approach, we have proposed a self-organizing IMS. A self-organizing IMS enables IMS functional components and corresponding physical nodes to adapt dynamically and automatically based on situation such as network load and available system resources while continuing IMS operation. To realize this, service continuity for users is an important requirement when a reconfiguration occurs during operation. In this paper, we propose a mechanism that will provide service continuity to users and focus on the implementation and describe performance evaluation in terms of number of control signaling and processing time during reconfigurationKeywords: IMS, SIP, Service Continuity, Self-organizing, and Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159812051 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration
Authors: Nooshin Salari, Viliam Makis
Abstract:
In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.Keywords: Reliability, production, maintenance optimization, Semi-Markov Decision Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813