Search results for: Wireless communication network.
2512 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi
Abstract:
This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.
Keywords: Signature Recognition, Artificial Neural Network, Angle Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24962511 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11482510 Power System Voltage Control using LP and Artificial Neural Network
Authors: A. Sina, A. Aeenmehr, H. Mohamadian
Abstract:
Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.Keywords: voltage control, linear programming, artificial neural network, power systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17602509 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20792508 Impact of Liquidity Crunch on Interbank Network
Authors: I. Lucas, N. Schomberg, F-A. Couturier
Abstract:
Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced.
Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.
Keywords: Systemic Risk, Financial Contagion, Liquidity Risk, Interbank Market, Network Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262507 Project Complexity Indices based on Topology Features
Authors: Amer A. Boushaala
Abstract:
The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.Keywords: Activity networks, Complexity index, Networkcomplexity measure, Network topology, Project Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16812506 Routing Algorithm for a Clustered Network
Authors: Hemanth KumarA.R, Sudhakara G., Satyanarayana B.S.
Abstract:
The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc
Keywords: Metric dimension, Cluster dimension, Cluster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12252505 Corporate Social Responsibility in China Apparel Industry
Authors: Zhao Linfei, Gu Qingliang
Abstract:
China apparel industry, which is deeply embedded in the global production network (GPN), faces the dual pressures of social upgrading and economic upgrading. Based on the survey in Ningbo apparel cluster, the paper shows the state of corporate social responsibility (CSR) in China apparel industry is better than before. And the investigation indicates that the firms who practice CSR actively perform better both socially and economically than those who inactively. The research demonstrates that CSR can be an initial capital rather than cost, and “doing well by doing good" is also existed in labor intensive industry.Keywords: Global production network, corporate social responsibility, China apparel industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29352504 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8782503 Using Trip Planners in Developing Proper Transportation Behavior
Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek
Abstract:
The article discusses multimodal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multimodal mobility. Solutions can be divided into three groups of measures – physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.
Keywords: Mobility, modal split, multimodal trip, multimodal platforms, sustainable transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18922502 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.
Keywords: Communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11922501 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.
Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992500 Robust On-Body Communications using Creeping Wave: Methodology and Analysis
Abstract:
In this paper methodology to exploit creeping wave for body area network BAN communication reliability are described. Creeping wave propagation effects are visualized & analyzed. During this work Dipole, IA antennas various antennas were redesigned using existing designs and their propagation characteristics were verified for optimum performance when used on BANs. These antennas were then applied on body shapes-including rectangular, spherical and cylindrical so that all the effects of actual human body can be taken nearly into account. Parametric simulation scheme was devised so that on Body channel characterization can be visualized at front, curved and back region. In the next phase multiple inputs multiple output MIMO scheme was introduced where virtual antennas were used in order to diminish the effects of antennas on the propagation of waves. Results were, extracted and analyzed at different heights. Finally based on comparative measurement and analysis it was concluded that on body propagation can be exploited to gain spatial diversity.Keywords: BAN, Creeping Wave, MIMO, WIAs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17152499 Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm
Authors: R. Srinivasa Rao, S.V.L. Narasimham, M. Ramalingaraju
Abstract:
Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches to reduce the power loss in the system. This paper presents a new method which applies an artificial bee colony algorithm (ABC) for determining the sectionalizing switch to be operated in order to solve the distribution system loss minimization problem. The ABC algorithm is a new population based metaheuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 14, 33, and 119-bus systems and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.
Keywords: Distribution system, Network reconfiguration, Loss reduction, Artificial Bee Colony Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37622498 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.
Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10632497 Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays
Authors: Ridha Ghayoula, Mbarek Traii, Ali Gharsallah
Abstract:
In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.Keywords: Multibeam, modelling, neural networks, synthesis, antennas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12282496 A Two-Channel Secure Communication Using Fractional Chaotic Systems
Authors: Long Jye Sheu, Wei Ching Chen, Yen Chu Chen, Wei Tai Weng
Abstract:
In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.Keywords: fractional chaotic systems, synchronization, securecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492495 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems
Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu
Abstract:
Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22892494 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.
Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9082493 Bond Graph and Bayesian Networks for Reliable Diagnosis
Authors: Abdelaziz Zaidi, Belkacem Ould Bouamama, Moncef Tagina
Abstract:
Bond Graph as a unified multidisciplinary tool is widely used not only for dynamic modelling but also for Fault Detection and Isolation because of its structural and causal proprieties. A binary Fault Signature Matrix is systematically generated but to make the final binary decision is not always feasible because of the problems revealed by such method. The purpose of this paper is introducing a methodology for the improvement of the classical binary method of decision-making, so that the unknown and identical failure signatures can be treated to improve the robustness. This approach consists of associating the evaluated residuals and the components reliability data to build a Hybrid Bayesian Network. This network is used in two distinct inference procedures: one for the continuous part and the other for the discrete part. The continuous nodes of the network are the prior probabilities of the components failures, which are used by the inference procedure on the discrete part to compute the posterior probabilities of the failures. The developed methodology is applied to a real steam generator pilot process.Keywords: Redundancy relations, decision-making, Bond Graph, reliability, Bayesian Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25252492 Architecture Based on Dynamic Graphs for the Dynamic Reconfiguration of Farms of Computers
Authors: Carmen Navarrete, Eloy Anguiano
Abstract:
In the last years, the computers have increased their capacity of calculus and networks, for the interconnection of these machines. The networks have been improved until obtaining the actual high rates of data transferring. The programs that nowadays try to take advantage of these new technologies cannot be written using the traditional techniques of programming, since most of the algorithms were designed for being executed in an only processor,in a nonconcurrent form instead of being executed concurrently ina set of processors working and communicating through a network.This paper aims to present the ongoing development of a new system for the reconfiguration of grouping of computers, taking into account these new technologies.
Keywords: Dynamic network topology, resource and task allocation, parallel computing, heterogeneous computing, dynamic reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13632491 Evaluation of Service Continuity in a Self-organizing IMS
Authors: Satoshi Komorita, Tsunehiko Chiba, Hidetoshi Yokota, Ashutosh Dutta, Christian Makaya, Subir Das, Dana Chee, F. Joe Lin, Henning Schulzrinne
Abstract:
The NGN (Next Generation Network), which can provide advanced multimedia services over an all-IP based network, has been the subject of much attention for years. While there have been tremendous efforts to develop its architecture and protocols, especially for IMS, which is a key technology of the NGN, it is far from being widely deployed. However, efforts to create an advanced signaling infrastructure realizing many requirements have resulted in a large number of functional components and interactions between those components. Thus, the carriers are trying to explore effective ways to deploy IMS while offering value-added services. As one such approach, we have proposed a self-organizing IMS. A self-organizing IMS enables IMS functional components and corresponding physical nodes to adapt dynamically and automatically based on situation such as network load and available system resources while continuing IMS operation. To realize this, service continuity for users is an important requirement when a reconfiguration occurs during operation. In this paper, we propose a mechanism that will provide service continuity to users and focus on the implementation and describe performance evaluation in terms of number of control signaling and processing time during reconfigurationKeywords: IMS, SIP, Service Continuity, Self-organizing, and Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15982490 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel
Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual
Abstract:
This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.
Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18332489 Ankh Key Broadband Array Antenna for 5G Applications
Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem
Abstract:
A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.
Keywords: 5G Technology, array antenna, microstrip, millimeter wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9632488 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25992487 Application of Neural Networks for 24-Hour-Ahead Load Forecasting
Authors: Fatemeh Mosalman Yazdi
Abstract:
One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21922486 Improved Rake Receiver Based On the Signal Sign Separation in Maximal Ratio Combining Technique for Ultra-Wideband Wireless Communication Systems
Authors: Rashid A. Fayadh, F. Malek, Hilal A. Fadhil, Norshafinash Saudin
Abstract:
At receiving high data rate in ultra wideband (UWB) technology for many users, there are multiple user interference and inter-symbol interference as obstacles in the multi-path reception technique. Since the rake receivers were designed to collect many resolvable paths, even more than hundred of paths. Rake receiver implementation structures have been proposed towards increasing the complexity for getting better performances in indoor or outdoor multi-path receivers by reducing the bit error rate (BER). So several rake structures were proposed in the past to reduce the number of combining and estimating of resolvable paths. To this aim, we suggested two improved rake receivers based on signal sign separation in the maximal ratio combiner (MRC), called positive-negative MRC selective rake (P-N/MRC-S-rake) and positive-negative MRC partial rake (P-N/MRC-S-rake) receivers. These receivers were introduced to reduce the complexity with less number of fingers and improving the performance with low BER. Before decision circuit, there is a comparator to compare between positive quantity and negative quantity to decide whether the transmitted bit is 1 or 0. The BER was driven by MATLAB simulation with multi-path environments for impulse radio time-hopping binary phase shift keying (TH-BPSK) modulation and the results were compared with those of conventional rake receivers.
Keywords: Selective and partial rake receivers, positive and negative signal separation, maximal ratio combiner, bit error rate performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19012485 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)
Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast
Abstract:
Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.Keywords: Computer architecture, parallel computing, NOC, routing algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16782484 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling
Authors: Prof. Chokri SLIM
Abstract:
A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.
Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166872483 Personalization and the Universal Communications Identifier Concept
Authors: Françoise Petersen, Mike Pluke, Tatiana Kovacikova, Giovanni Bartolomeo
Abstract:
As communications systems and technology become more advanced and complex, it will be increasingly important to focus on users- individual needs. Personalization and effective user profile management will be necessary to ensure the uptake and success of new services and devices and it is therefore important to focus on the users- requirements in this area and define solutions that meet these requirements. The work on personalization and user profiles emerged from earlier ETSI work on a Universal Communications Identifier (UCI) which is a unique identifier of the user rather than a range of identifiers of the many of communication devices or services (e.g. numbers of fixed phone at home/work, mobile phones, fax and email addresses). This paper describes work on personalization including standardized information and preferences and an architectural framework providing a description of how personalization can be integrated in Next Generation Networks, together with the UCI concept.
Keywords: Interoperability, Next Generation Network (NGN), Personalization, Universal Communications Identifier (UCI), User Profile Management (UPM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582