Search results for: pressure mapping sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2397

Search results for: pressure mapping sensor

837 Neuro-Hybrid Models for Automotive System Identification

Authors: Ventura Assuncao

Abstract:

In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.

Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
836 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique

Authors: R. Sarathi, G. Koperundevi

Abstract:

Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.

Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841
835 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: Distributed optical strain sensing, geotechnical monitoring, rock bolt stain measurement, bedding shear displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
834 Effect of Gating Sprue Height on Mechanical Properties of Thin Wall Ductile Iron

Authors: E. F. Ochulor, S. O. Adeosun, S. A. Balogun

Abstract:

Effect of sprue/metal head height on mould filling, microstructure and mechanical properties of TWDI casting is studied. Results show that metal/sprue height of 50 mm is not sufficient to push the melt through the gating channel, but as it is increased from 100-350 mm, proper mould filling is achieved. However at higher heights between 200 mm and 350 mm, defects associated with incomplete solidification, carbide precipitation and turbulent flow are evident. This research shows that superior UTS, hardness, nodularity and nodule count are obtained at 100 mm sprue height.

Keywords: Melt pressure and velocity, nodularity, nodule count, sprue height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
833 An Efficient Burst Errors Combating for Image Transmission over Mobile WPANs

Authors: Mohsen A. M. El-Bendary, Mostafa A. R. El-Tokhy

Abstract:

This paper presents an efficient burst error spreading tool. Also, it studies a vital issue in wireless communications, which is the transmission of images over wireless networks. IEEE ZigBee 802.15.4 is a short-range communication standard that could be used for small distance multimedia transmissions. In fact, the ZigBee network is a Wireless Personal Area Network (WPAN), which needs a strong interleaving mechanism for protection against error bursts. Also, it is low power technology and utilized in the Wireless Sensor Networks (WSN) implementation. This paper presents the chaotic interleaving scheme as a data randomization tool for this purpose. This scheme depends on the chaotic Baker map. The mobility effects on the image transmission are studied with different velocity through utilizing the Jakes’ model. A comparison study between the proposed chaotic interleaving scheme and the traditional block and convolutional interleaving schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes.

Keywords: WPANs, Burst Errors, Mobility, Interleaving Techniques, Fading channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
832 Rock Slope Stabilization and Protection for Roads and Multi-Storey Structures in Jabal Omar, Saudi Arabia

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Abdelazim Ibrahim

Abstract:

Jabal Omar is located in the western side of Makkah city in Saudi Arabia. The proposed Jabal Omar Development project includes several multi-storey buildings, roads, bridges and below ground structures founded at various depths. In this study, geological mapping and site inspection which covered pre-selected areas were carried out within the easily accessed parts. Geological features; including rock types, structures, degree of weathering, and geotechnical hazards were observed and analyzed with specified software and also were documented in form of photographs. The presence of joints and fractures in the area made the rock blocks small and weak. The site is full of jointing; it was observed that, the northern side consists of 3 to 4 jointing systems with 2 random fractures associated with dykes. The southern part is affected by 2 to 3 jointing systems with minor fault and shear zones. From the field measurements and observations, it was concluded that, the Jabal Omar intruded by andesitic and basaltic dykes of different thickness and orientation. These dykes made the outcrop weak, highly deformed and made the rock masses sensitive to weathering.

Keywords: Rock, slope, stabilization, protection, Makkah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
831 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
830 Design of the Mathematical Model of the Respiratory System Using Electro-acoustic Analogy

Authors: M. Rozanek, K. Roubik

Abstract:

The article deals with development, design and implementation of a mathematical model of the human respiratory system. The model is designed in order to simulate distribution of important intrapulmonary parameters along the bronchial tree such as pressure amplitude, tidal volume and effect of regional mechanical lung properties upon the efficiency of various ventilatory techniques. Therefore exact agreement of the model structure with the lung anatomical structure is required. The model is based on the lung morphology and electro-acoustic analogy is used to design the model.

Keywords: Model of the respiratory system, total lung impedance, intrapulmonary parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
829 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: Dexel, process stability, material removal, milling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
828 Exergetic Comparison between Three Configurations of Two Stage Vapor Compression Refrigeration Systems

Authors: Wafa Halfaoui Mbarek, Khir Tahar, Ben Brahim Ammar

Abstract:

This study reports a comparison from an exergetic point of view between three configurations of vapor compression industrial refrigeration systems operating with R134a as working fluid. The performances of the different cycles are analyzed as function of several operating parameters such as condensing temperature and inter stage pressure. In addition, the contributions of component exergy destruction to the total exergy destruction are obtained for each system. The results are estimated to be used in the selection of the most advantageous configuration from an exergetic view point.

Keywords: Vapor compression, exergy, destruction, efficiency, R134a.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
827 Fast and Accurate Reservoir Modeling: Genetic Algorithm versus DIRECT Method

Authors: Mohsen Ebrahimi, Milad M. Rabieh

Abstract:

In this paper, two very different optimization algorithms, Genetic and DIRECT algorithms, are used to history match a bottomhole pressure response for a reservoir with wellbore storage and skin with the best possible analytical model. No initial guesses are available for reservoir parameters. The results show that the matching process is much faster and more accurate for DIRECT method in comparison with Genetic algorithm. It is furthermore concluded that the DIRECT algorithm does not need any initial guesses, whereas Genetic algorithm needs to be tuned according to initial guesses.

Keywords: DIRECT algorithm, Genetic algorithm, Analytical modeling, History match

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
826 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
825 An Automatic Pipeline Monitoring System Based on PCA and SVM

Authors: C. Wan, A. Mita

Abstract:

This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.

Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
824 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments

Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh

Abstract:

In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.

Keywords: Heading, spur gear, numerical analysis, experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
823 Validating Condition-Based Maintenance Algorithms Through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
822 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks

Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim

Abstract:

Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.

Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
821 Training Isolated Respiratory in Rehabilitation

Authors: Marketa Kotova, Jana Kolarova, Ludek Zalud, Petr Dobsak

Abstract:

A game for training of breath (TRABR) for continuous monitoring of pulmonary ventilation during the patients’ therapy focuses especially on monitoring of their ventilation processes. It is necessary to detect, monitor and differentiate abdominal and thoracic breathing during the therapy. It is a fun form of rehabilitation where the patient plays and also practicing isolated breathing. Finally the game to practice breath was designed to evaluate whether the patient uses two types of breathing or not.

Keywords: Pulmonary ventilation, thoracic breathing, abdominal breathing, breath monitoring using pressure sensors, game TRABR (TRAining of BReath).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
820 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach

Authors: E. Nemati Lay, M. Peymani, E. Sanjari

Abstract:

Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.

Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
819 The Study of Ultimate Response Guideline of Kuosheng BWR/6 Nuclear Power Plant Using TRACE and SNAP

Authors: J. R. Wang, J. H. Yang, Y. Chiang, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

In this study of ultimate response guideline (URG), Kuosheng BWR/6 nuclear power plant (NPP) TRACE model was established. The reactor depressurization, low pressure water injection, and containment venting are the main actions of URG. This research focuses to evaluate the efficiency of URG under Fukushima-like conditions. Additionally, the sensitivity study of URG was also performed in this research. The analysis results of TRACE present that URG can keep the peak cladding temperature (PCT) below 1088.7 K (the failure criteria) under Fukushima-like conditions. It implied that Kuosheng NPP was at the safe situation.

Keywords: BWR, TRACE, safety analysis, URG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
818 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
817 Kinetics of Palm Oil Cracking in Batch Reactor

Authors: Farouq Twaiq, Ishaq Al-Anbari, Mustafa Nasser

Abstract:

The kinetics of palm oil catalytic cracking over aluminum containing mesoporous silica Al-MCM-41 (5% Al) was investigated in a batch autoclave reactor at the temperatures range of 573 – 673 K. The catalyst was prepared by using sol-gel technique and has been characterized by nitrogen adsorption and x-ray diffraction methods. Surface area of 1276 m2/g with average pore diameter of 2.54 nm and pore volume of 0.811 cm3/g was obtained. The experimental catalytic cracking runs were conducted using 50 g of oil and 1 g of catalyst. The reaction pressure was recorded at different time intervals and the data were analyzed using Levenberg- Marquardt (LM) algorithm using polymath software. The results show that the reaction order was found to be -1.5 and activation energy of 3200 J/gmol.

Keywords: Batch Reactor, Catalytic Cracking, Kinetics, Palm Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
816 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
815 Coalescence of Insulin and Triglyceride/High Density Lipoprotein Cholesterol Ratio for the Derivation of a Laboratory Index to Predict Metabolic Syndrome in Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Morbid obesity is a health threatening condition particularly in children. Generally, it leads to the development of metabolic syndrome (MetS) characterized by central obesity, elevated fasting blood glucose (FBG), triglyceride (TRG), blood pressure values and suppressed high density lipoprotein cholesterol (HDL-C) levels. However, some ambiguities exist during the diagnosis of MetS in children below 10 years of age. Therefore, clinicians are in the need of some surrogate markers for the laboratory assessment of pediatric MetS. In this study, the aim is to develop an index, which will be more helpful during the evaluation of further risks detected in morbid obese (MO) children. A total of 235 children with normal body mass index (N-BMI), with varying degrees of obesity; overweight (OW), obese (OB), MO as well as MetS participated in this study. The study was approved by the Institutional Ethical Committee. Informed consent forms were obtained from the parents of the children. Obesity states of the children were classified using BMI percentiles adjusted for age and sex. For the purpose, tabulated data prepared by WHO were used. MetS criteria were defined. Systolic and diastolic blood pressure values were measured. Parameters related to glucose and lipid metabolisms were determined. FBG, insulin (INS), HDL-C, TRG concentrations were determined. Diagnostic Obesity Notation Model Assessment Laboratory (DONMALAB) Index [ln TRG/HDL-C*INS] was introduced. Commonly used insulin resistance (IR) indices such as Homeostatic Model Assessment for IR (HOMA-IR) as well as ratios such as TRG/HDL-C, TRG/HDL-C*INS, HDL-C/TRG*INS, TRG/HDL-C*INS/FBG, log, and ln versions of these ratios were calculated. Results were interpreted using statistical package program (SPSS Version 16.0) for Windows. The data were evaluated using appropriate statistical tests. The degree for statistical significance was defined as 0.05. 35 N, 20 OW, 47 OB, 97 MO children and 36 with MetS were investigated. Mean ± SD values of TRG/HDL-C were 1.27 ± 0.69, 1.86 ± 1.08, 2.15 ± 1.22, 2.48 ± 2.35 and 4.61 ± 3.92 for N, OW, OB, MO and MetS children, respectively. Corresponding values for the DONMALAB index were 2.17 ± 1.07, 3.01 ± 0.94, 3.41 ± 0.93, 3.43 ± 1.08 and 4.32 ± 1.00. TRG/HDL-C ratio significantly differed between N and MetS groups. On the other hand, DONMALAB index exhibited statistically significant differences between N and all the other groups except the OW group. This index was capable of discriminating MO children from those with MetS. Statistically significant elevations were detected in MO children with MetS (p < 0.05). Multiple parameters are commonly used during the assessment of MetS. Upon evaluation of the values obtained for N, OW, OB, MO groups and for MO children with MetS, the [ln TRG/HDL-C*INS] value was unique in discriminating children with MetS.

Keywords: Children, index, laboratory, metabolic syndrome, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
814 Toward Full Public E-Service Environment in Developing Countries

Authors: H. S. Hassan, E. Shehab, J. Peppard

Abstract:

Changing technology and increased constituent demand for government services derive the need for governmental responsiveness. The government organisations in the developing countries will be under increased pressure to change their bureaucratic systems to be able to respond rapidly to changing and increasing requirements and rapid technology advancements. This paper aims to present a conceptual framework for explaining the main barriers and drivers of public e-service development. Therefore, the framework provides a basic context within which the process and practice of E-Service can be implemented successfully in the public sector organisations. The framework is flexible enough to be adopted by governments at different levels; national or local by developing countries around the world.

Keywords: Developing countries, E-service, Governmentservices, Public administration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
813 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
812 Preservation of Molecular Ozone in a Clathrate Hydrate : Three-Phase (Gas + Liquid + Hydrate) Equilibrium Measurements for O3 + O2 + CO2 + H2O Systems

Authors: Kazutoshi Shishido, Sanehiro Muromachi, Ryo Ohmura

Abstract:

This paper reports the three-phase (gas + liquid + hydrate) equilibrium pressure versus temperature data for a (O3 + O2 + CO2 + H2O) system for developing the hydrate-based technology to preserve ozone, a chemically unstable substance, for various industrial, medical and consumer uses. These data cover the temperature range from 272 K to 277 K, corresponding to pressures from 1.6 MPa to 3.1 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 molar ratios in the gas phase, which are approximately 4 : 6, 5 : 5, respectively. The mole fraction of ozone in the gas phase was ~0.03 , which are the densest ozone fraction to artificially form O3 containing hydrate ever reported in the literature. Based on these data, the formation of hydrate containing high-concentration ozone, as high as 1 mass %, will be expected.

Keywords: Clathrate hydrate, Ozone, Molecule storage, Sterilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
811 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
810 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

Authors: Eu Tteum Ha, Kwang Ryel Ryu

Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Keywords: Ensemble learning, activity recognition, smartphone accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
809 Estimation of Forest Fire Emission in Thailand by Using Remote Sensing Information

Authors: A. Junpen, S. Garivait, S. Bonnet, A. Pongpullponsak

Abstract:

The forest fires in Thailand are annual occurrence which is the cause of air pollutions. This study intended to estimate the emission from forest fire during 2005-2009 using MODerateresolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites, experimental data, and statistical data. The forest fire emission is estimated using equation established by Seiler and Crutzen in 1982. The spatial and temporal variation of forest fire emission is analyzed and displayed in the form of grid density map. From the satellite data analysis suggested between 2005 and 2009, the number of fire hotspots occurred 86,877 fire hotspots with a significant highest (more than 80% of fire hotspots) in the deciduous forest. The peak period of the forest fire is in January to May. The estimation on the emissions from forest fires during 2005 to 2009 indicated that the amount of CO, CO2, CH4, and N2O was about 3,133,845 tons, 47,610.337 tons, 204,905 tons, and 6,027 tons, respectively, or about 6,171,264 tons of CO2eq. They also emitted 256,132 tons of PM10. The year 2007 was found to be the year when the emissions were the largest. Annually, March is the period that has the maximum amount of forest fire emissions. The areas with high density of forest fire emission were the forests situated in the northern, the western, and the upper northeastern parts of the country.

Keywords: Emissions, Forest fire, Remote sensing information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
808 Design Optimization of the Primary Containment Building of a Pressurized Water Reactor

Authors: M. Hossain, A. H. Khan, M. A. R. Sarkar

Abstract:

Primary containment structure is one of the five safety layers of a nuclear facility which is needed to be designed in such a manner that it can withstand the pressure and excessive radioactivity during accidental situations. It is also necessary to ensure minimization of cost with maximum possible safety in order to make the design economically feasible and attractive. This paper attempts to identify the optimum design conditions for primary containment structure considering both mechanical and radiation safety keeping the economic aspects in mind. This work takes advantage of commercial simulation software to identify the suitable conditions without the requirement of costly experiments. Generated data may be helpful for further studies.

Keywords: PWR, concrete containment, finite element approach, neutron attenuation, Von Mises Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875