Search results for: mobile online social networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4447

Search results for: mobile online social networks

2917 Designing for Inclusion within the Learning Management System: Social Justice, Identities, and Online Design for Digital Spaces in Higher Education

Authors: Christina Van Wingerden

Abstract:

The aim of this paper is to propose pedagogical design for learning management systems (LMS) that offers greater inclusion for students based on a number of theoretical perspectives and delineated through an example. Considering the impact of COVID-19, including on student mental health, the research suggesting the importance of student sense of belonging on retention, success, and student well-being, the author describes intentional LMS design incorporating theoretically based practices informed by critical theory, feminist theory, indigenous theory and practices, and new materiality. This article considers important aspects of these theories and practices which attend to inclusion, identities, and socially just learning environments. Additionally, increasing student sense of belonging and mental health through LMS design influenced by adult learning theory and the community of inquiry model are described.  The process of thinking through LMS pedagogical design with inclusion intentionally in mind affords the opportunity to allow LMS to go beyond course use as a repository of documents, to an intentional community of practice that facilitates belonging and connection, something much needed in our times. In virtual learning environments it has been harder to discern how students are doing, especially in feeling connected to their courses, their faculty, and their student peers. Increasingly at the forefront of public universities is addressing the needs of students with multiple and intersecting identities and the multiplicity of needs and accommodations. Education in 2020, and moving forward, calls for embedding critical theories and inclusive ideals and pedagogies to the ways instructors design and teach in online platforms. Through utilization of critical theoretical frameworks and instructional practices, students may experience the LMS as a welcoming place with intentional plans for welcoming diversity in identities.

Keywords: Belonging, critical pedagogy, instructional design, Learning Management System, LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
2916 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2915 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
2914 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
2913 Bayesian Belief Networks for Test Driven Development

Authors: Vijayalakshmy Periaswamy S., Kevin McDaid

Abstract:

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Keywords: Software testing, Test Driven Development, Bayesian Belief Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
2912 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220
2911 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2910 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
2909 Synthesis of Wavelet Filters using Wavelet Neural Networks

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.

Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2908 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
2907 Investigating Student Behavior in Adopting Online Formative Assessment Feedback

Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons

Abstract:

In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.

Keywords: Formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
2906 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
2905 The Political Biographies of Social Workers: A Qualitative Study of the Political Lives of Social Workers

Authors: Hefin Gwilym

Abstract:

This paper will explore the political biographies of social workers in a neoliberal era. The findings are based on a research project for a successfully completed professional doctorate in social work. The methodology deployed for the research is a combination of constructivist grounded theory and biographical inquiry. The paper will present findings from 14 biographical interviews and will focus on one case study of a participant whose life story is richly informed by political social work. The 14 participants reflect different genders, ethnic identities, cultural and linguistic identities, age and length of social work careers. The participants also reflect different forms of political engagement, such as, as political activists and members of political parties, including parliamentarians. The findings demonstrate how deeply ingrained the social work identity is amongst the participants and how their political identity has remained strongly social democratic in nature despite the many changes in the social work profession since the rise of neoliberalism as a thought collective and policy package. The individual case study will explore the early roots of political identity in the childhood and nurturing years and the interface with subsequent social work and political careers. It will also explore the evolution of the participant’s political identity in the social work career. The case study will also present findings on how the participant has contributed to the political field with policy involvement and initiatives. The presentation will conclude with a discussion on how this particular group of social workers can best contribute to the future direction of the social work profession.

Keywords: Political social work, political biographies, neoliberal, grounded theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899
2904 Integrating E-learning Environments with Computational Intelligence Assessment Agents

Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
2903 Modeling “Web of Trust“ with Web 2.0

Authors: Omer Mahmood, Selvakennedy Selvadurai

Abstract:

“Web of Trust" is one of the recognized goals for Web 2.0. It aims to make it possible for the people to take responsibility for what they publish on the web, including organizations, businesses and individual users. These objectives, among others, drive most of the technologies and protocols recently standardized by the governing bodies. One of the great advantages of Web infrastructure is decentralization of publication. The primary motivation behind Web 2.0 is to assist the people to add contents for Collective Intelligence (CI) while providing mechanisms to link content with people for evaluations and accountability of information. Such structure of contents will interconnect users and contents so that users can use contents to find participants and vice versa. This paper proposes conceptual information storage and linking model, based on decentralized information structure, that links contents and people together. The model uses FOAF, Atom, RDF and RDFS and can be used as a blueprint to develop Web 2.0 applications for any e-domain. However, primary target for this paper is online trust evaluation domain. The proposed model targets to assist the individuals to establish “Web of Trust" in online trust domain.

Keywords: Web of Trust, Semantic Web, Electronic SocialNetworks, Information Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
2902 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks

Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm. 

Keywords: Distributed generation, heuristic approach, Optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
2901 Schools of Thought in the Field of Social Entrepreneurship

Authors: Cris Bravo

Abstract:

Social entrepreneurship is a new and exciting topic that holds a great promise in helping alleviate the social problems of the world. As a new subject, the meaning of the term is too broad and this is counterproductive in trying to build understanding around the concept. The purpose of this study is to identify and compare the elements of social entrepreneurship as defined by seven international organizations leading social entrepreneurship projects: Ashoka Foundation, Skoll Foundation, Schwab Foundation and Yunus Center; as well as from three other institutions fostering social entrepreneurship: Global Social Benefit Institute, BRAC University, and Socialab. The study used document analysis from Skoll Foundation, Schwab Foundation, Yunus Center and Ashoka Foundation; and open ended interview to experts from the Global Social Benefit Institute at Santa Clara University in United States, BRAC University from Bangladesh, and Socialab from Argentina. The study identified three clearly differentiated schools of thought, based on their views on revenue, scalability, replicability and geographic location. While this study is by no means exhaustive, it provides an indication of the patterns of ideas fostered by important players in the field. By clearly identifying the similarities and differences in the concept of social entrepreneurship, research and practitioners are better equipped to build on the subject, and to promote more adequate and accurate social policies to foster the development of social entrepreneurship.

Keywords: Replicability, revenue, scalability, schools of thought, social entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4317
2900 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses

Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin

Abstract:

Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.

Keywords: Problem solving-driven, MOOCs, teaching art, learning flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
2899 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks

Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan

Abstract:

Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.

Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
2898 Virtualization Technology as a Tool for Teaching Computer Networks

Authors: Dalibor Dobrilovic, Borislav Odadžic

Abstract:

In this paper is being described a possible use of virtualization technology in teaching computer networks. The virtualization can be used as a suitable tool for creating virtual network laboratories, supplementing the real laboratories and network simulation software in teaching networking concepts. It will be given a short description of characteristic projects in the area of virtualization technology usage in network simulation, network experiments and engineering education. A method for implementing laboratory has also been explained, together with possible laboratory usage and design of laboratory exercises. At the end, the laboratory test results of virtual laboratory are presented as well.

Keywords: Computer network simulation software, teaching networking concepts, virtual network laboratory, virtualization technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2897 Validation of Contemporary Physical Activity Tracking Technologies through Exercise in a Controlled Environment

Authors: Reem I. Altamimi, Geoff D. Skinner

Abstract:

Extended periods engaged in sedentary behavior increases the risk of becoming overweight and/or obese which is linked to other health problems. Adding technology to the term ‘active living’ permits its inclusion in promoting and facilitating habitual physical activity. Technology can either act as a barrier to, or facilitate this lifestyle, depending on the chosen technology. Physical Activity Monitoring Technologies (PAMTs) are a popular example of such technologies. Different contemporary PAMTs have been evaluated based on customer reviews; however, there is a lack of published experimental research into the efficacy of PAMTs. This research aims to investigate the reliability of four PAMTs: two wristbands (Fitbit Flex and Jawbone UP), a waist-clip (Fitbit One), and a mobile application (iPhone Health Application) for recording a specific distance walked on a treadmill (1.5km) at constant speed. Physical activity tracking technologies are varied in their recordings, even while performing the same activity. This research demonstrates that Jawbone UP band recorded the most accurate distance compared to Fitbit One, Fitbit Flex, and iPhone Health Application.

Keywords: Fitbit, Jawbone UP, mobile tracking applications, physical activity tracking technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
2896 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons

Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia

Abstract:

Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.

Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
2895 Ant Colony Optimization for Optimal Distributed Generation in Distribution Systems

Authors: I. A. Farhat

Abstract:

The problem of optimal planning of multiple sources of distributed generation (DG) in distribution networks is treated in this paper using an improved Ant Colony Optimization algorithm (ACO). This objective of this problem is to determine the DG optimal size and location that in order to minimize the network real power losses. Considering the multiple sources of DG, both size and location are simultaneously optimized in a single run of the proposed ACO algorithm. The various practical constraints of the problem are taken into consideration by the problem formulation and the algorithm implementation. A radial power flow algorithm for distribution networks is adopted and applied to satisfy these constraints. To validate the proposed technique and demonstrate its effectiveness, the well-know 69-bus feeder standard test system is employed.cm.

Keywords: About Ant Colony Optimization (ACO), Distributed Generation (DG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290
2894 Associations between Game Users and Life Satisfaction: Role of Self-Esteem, Self-Efficacy and Social Capital

Authors: Hye Rim Lee, Eui Jun Jeong

Abstract:

This study makes an integrated investigation on how life satisfaction is associated with the Korean game users' psychological variables (self-esteem, game and life self- efficacy), social variables (bonding and bridging social capital), and demographic variables (age, gender). The data used for the empirical analysis came from a representative sample survey conducted in South Korea. Results show that self-esteem and game efficacy were an important antecedent to the degree of users’ life satisfaction. Both bonding social capital and bridging social capital enhance the level of the users’ life satisfaction. The importance of perspectives as well as their implications for the game users and further associated research is explored.

Keywords: Life satisfaction, self-esteem, game efficacy, life-efficacy, social capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
2893 Comparison of Two Interval Models for Interval-Valued Differential Evolution

Authors: Hidehiko Okada

Abstract:

The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks. 

Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2892 Grounded Theory of Consumer Loyalty, a Perspective through Video Game Addiction

Authors: Bassam Shaikh, R. S. A. Jumain

Abstract:

Game addiction has become an extremely important topic in psychology researchers, particularly in understanding and explaining why individuals become addicted (to video games). In previous studies, effect of online game addiction on social responsibilities, health problems, government action, and the behaviors of individuals to purchase and the causes of making individuals addicted on the video games has been discussed. Extending these concepts in marketing, it could be argued than the phenomenon could enlighten and extending our understanding on consumer loyalty. This study took the Grounded Theory approach, and found that motivation, satisfaction, fulfillments, exploration and achievements to be part of the important elements that builds consumer loyalty.

Keywords: Consumer Loyalty, Video Games Addiction, Video Games, Grounded Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
2891 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
2890 Performance Evaluation of QoS Based Forwarding and Non Forwarding Energetic Node Selection Algorithm for Reducing the Flooding in Multihop Routing in Highly Dynamic MANET

Authors: R. Reka, R. S. D. Wahidabanu

Abstract:

The aim of this paper is to propose a novel technique to guarantee Quality of Service (QoS) in a highly dynamic environment. The MANET changes its topology dynamically as the nodes are moved frequently. This will cause link failure between mobile nodes. MANET cannot ensure reliability without delay. The relay node is selected based on achieving QoS in previous transmission. It considers one more factor Connection Existence Period (CEP) to ensure reliability. CEP is to find out the period during that connection exists between the nodes. The node with highest CEP becomes a next relay node. The relay node is selected dynamically to avoid frequent failure. The bandwidth of each link changed dynamically based on service rate and request rate. This paper proposes Active bandwidth setting up algorithm to guarantee the QoS. The series of results obtained by using the Network Simulator (NS-2) demonstrate the viability of our proposed techniques.

Keywords: Bandwidth, Connection Existence Period (CEP), Mobile Adhoc Network (MANET), Quality of Service (QoS), Relay node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2889 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection

Authors: D. Naga Ravi Kiran, C. G. Dethe

Abstract:

Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.

Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
2888 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques

Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici

Abstract:

Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.

Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731