Search results for: Multivariate Hierarchical Linear Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8763

Search results for: Multivariate Hierarchical Linear Model

7233 Combustion Analysis of Suspended Sodium Droplet

Authors: T. Watanabe

Abstract:

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Keywords: Combustion, analysis, sodium, droplet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
7232 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model

Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi

Abstract:

Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.

Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
7231 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
7230 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh

Abstract:

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.

Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
7229 Advanced Robust PDC Fuzzy Control of Nonlinear Systems

Authors: M. Polanský

Abstract:

This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.

Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
7228 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam

Authors: T. M. Ismail, M. Abd El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.

Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
7227 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: Wind resource assessment, Weather Research and Forecasting (WRF) Model, python, GIS software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
7226 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
7225 A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management

Authors: Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.

Keywords: Forecasting, Model predictive control, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
7224 Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism

Authors: Kaan T. Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F. Aksit, Ilyas Kandemir, Kayhan Gulez

Abstract:

In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for the vertical flight mode has also been developed and its performance has been tested with several simulations.

Keywords: Control, Dynamic model, LQR, Quadrotor, Tilt-wing, VTOL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4311
7223 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine

Authors: A. A. Pawar, R. R. Kulkarni

Abstract:

For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.

Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
7222 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based On Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: Dynamic Time Warping, Glottal Area Waveform, Linear Predictive Coding, High-Speed Laryngeal Images, Hilbert Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
7221 Single Zone Model for HCCI Engine Fueled with n-Heptane

Authors: Thanapiyawanit Bancha, Lu Jau-Huai

Abstract:

In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.

Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
7220 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: Quality of experience, quality of service, packet loss probability, network capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
7219 A Proposed Trust Model for the Semantic Web

Authors: Hoda Waguih

Abstract:

A serious problem on the WWW is finding reliable information. Not everything found on the Web is true and the Semantic Web does not change that in any way. The problem will be even more crucial for the Semantic Web, where agents will be integrating and using information from multiple sources. Thus, if an incorrect premise is used due to a single faulty source, then any conclusions drawn may be in error. Thus, statements published on the Semantic Web have to be seen as claims rather than as facts, and there should be a way to decide which among many possibly inconsistent sources is most reliable. In this work, we propose a trust model for the Semantic Web. The proposed model is inspired by the use trust in human society. Trust is a type of social knowledge and encodes evaluations about which agents can be taken as reliable sources of information or services. Our proposed model allows agents to decide which among different sources of information to trust and thus act rationally on the semantic web.

Keywords: Semantic Web, Trust, Web of Trust, WWW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
7218 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: Crisis, management, model, organization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
7217 A Mixed Integer Programming for Port Anzali Development Plan

Authors: Mahdieh Allahviranloo

Abstract:

This paper introduces a mixed integer programming model to find the optimum development plan for port Anzali. The model minimizes total system costs taking into account both port infrastructure costs and shipping costs. Due to the multipurpose function of the port, the model consists of 1020 decision variables and 2490 constraints. Results of the model determine the optimum number of berths that should be constructed in each period and for each type of cargo. In addition to, the results of sensitivity analysis on port operation quantity provide useful information for managers to choose the best scenario for port planning with the lowest investment risks. Despite all limitations-due to data availability-the model offers a straightforward decision tools to port planners aspiring to achieve optimum port planning steps.

Keywords: MILP, Multipurpose Terminal, Port Operation Optimization, Port Anzali.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
7216 A Study on Cancer-Cell Invasion Based On the Diffuse Interface Model

Authors: Zhang Linan, Jihwan Song, Dongchoul Kim

Abstract:

In this study, a three-dimensional haptotaxis model to simulate the migration of a population of cancer cells has been proposed. The invasion of cancer cells is related with the hapto-attractant and the effect of the interface energies between the cells and the ECM. The diffuse interface model, which incorporates the haptotaxis mechanism and interface energies, is employed. The semi-implicit Fourier spectral scheme is adopted for efficient evaluation of the simulation. The simulation results thoroughly reveal the dynamics of cancer-cell migration.

Keywords: Haptotaxis, Cancer Cells, Cell Migration, Interface Energy, Diffuse Interface Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
7215 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems

Authors: V. Tawiwat, T. Amornthep, P. Pnop

Abstract:

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.

Keywords: Optimization, Dynamic, Linear Systems, Jerks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
7214 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici

Abstract:

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Keywords: Inverted pendulum, model predictive control, swingup, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
7213 MIMO System Order Reduction Using Real-Coded Genetic Algorithm

Authors: Swadhin Ku. Mishra, Sidhartha Panda, Simanchala Padhy, C. Ardil

Abstract:

In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.

Keywords: Multi-input-multi-output (MIMO) system.Modelorder reduction. Integral squared error (ISE). Real-coded geneticalgorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
7212 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
7211 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: Emotion detection, TF-IDF, WEKA tool, classification algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
7210 The Study of Relative Efficiency in Growth Curve Model

Authors: Nan Chen, Baoguang Tian

Abstract:

In this paper, some relative efficiency have been discussed, including the LSE estimate with respect to BLUE in curve model. Four new kinds of relative efficiency have defined, and their upper bounds have been discussed.

Keywords: Relative efficiency, LSE estimate, BLUE estimate, Upper bound, Curve model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
7209 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
7208 A New Direct Updating Method for Undamped Structural Systems

Authors: Yongxin Yuan, Jiashang Jiang

Abstract:

A new numerical method for simultaneously updating mass and stiffness matrices based on incomplete modal measured data is presented. By using the Kronecker product, all the variables that are to be modified can be found out and then can be updated directly. The optimal approximation mass matrix and stiffness matrix which satisfy the required eigenvalue equation and orthogonality condition are found under the Frobenius norm sense. The physical configuration of the analytical model is preserved and the updated model will exactly reproduce the modal measured data. The numerical example seems to indicate that the method is quite accurate and efficient.

Keywords: Finite element model, model updating, modal data, optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
7207 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji

Abstract:

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
7206 A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem

Authors: Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli, Mohammad Mahdi Paydar

Abstract:

With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.

Keywords: Home health care supply chain, location-allocation-routing problem, imperialist competitive algorithm, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
7205 A Novel Adaptive E-Learning Model Based on Developed Learner's Styles

Authors: Hazem M. El-Bakry, Ahmed A. Saleh, Taghreed T. Asfour

Abstract:

Adaptive e-learning today gives the student a central role in his own learning process. It allows learners to try things out, participate in courses like never before, and get more out of learning than before. In this paper, an adaptive e-learning model for logic design, simplification of Boolean functions and related fields is presented. Such model presents suitable courses for each student in a dynamic and adaptive manner using existing database and workflow technologies. The main objective of this research work is to provide an adaptive e-learning model based learners' personality using explicit and implicit feedback. To recognize the learner-s, we develop dimensions to decide each individual learning style in order to accommodate different abilities of the users and to develop vital skills. Thus, the proposed model becomes more powerful, user friendly and easy to use and interpret. Finally, it suggests a learning strategy and appropriate electronic media that match the learner-s preference.

Keywords: Adaptive learning, Learning styles, Teaching strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
7204 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: Torsional vibration, full-size model, scale model, scaling laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756