Search results for: Multi criteria inventory classification models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5752

Search results for: Multi criteria inventory classification models

4282 A Study of Applying the Use of Breathing Training to Palliative Care Patients, Based on the Bio-Psycho-Social Model

Authors: Wenhsuan Lee, Yachi Chang, Yingyih Shih

Abstract:

In clinical practices, it is common that while facing the unknown progress of their disease, palliative care patients may easily feel anxious and depressed. These types of reactions are a cause of psychosomatic diseases and may also influence treatment results. However, the purpose of palliative care is to provide relief from all kinds of pains. Therefore, how to make patients more comfortable is an issue worth studying. This study adopted the “bio-psycho-social model” proposed by Engel and applied spontaneous breathing training, in the hope of seeing patients’ psychological state changes caused by their physiological state changes, improvements in their anxious conditions, corresponding adjustments of their cognitive functions, and further enhancement of their social functions and the social support system. This study will be a one-year study. Palliative care outpatients will be recruited and assigned to the experimental group or the control group for six outpatient visits (once a month), with 80 patients in each group. The patients of both groups agreed that this study can collect their physiological quantitative data using an HRV device before the first outpatient visit. They also agreed to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” before the first outpatient visit, to fill a self-report questionnaire after each outpatient visit, and to answer the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire” after the last outpatient visit. The patients of the experimental group agreed to receive the breathing training under HRV monitoring during the first outpatient visit of this study. Before each of the following three outpatient visits, they were required to fill a self-report questionnaire regarding their breathing practices after going home. After the outpatient visits, they were taught how to practice breathing through an HRV device and asked to practice it after going home. Later, based on the results from the HRV data analyses and the pre-tests and post-tests of the “Beck Anxiety Inventory (BAI)”, the “Taiwanese version of the WHOQOL-BREF questionnaire”, the influence of the breathing training in the bio, psycho, and social aspects were evaluated. The data collected through the self-report questionnaires of the patients of both groups were used to explore the possible interfering factors among the bio, psycho, and social changes. It is expected that this study will support the “bio-psycho-social model” proposed by Engel, meaning that bio, psycho, and social supports are closely related, and that breathing training helps to transform palliative care patients’ psychological feelings of anxiety and depression, to facilitate their positive interactions with others, and to improve the quality medical care for them.

Keywords: Palliative care, breathing training, bio-psycho-social Model, heart rate variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
4281 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: Chlorodifluoromethane (HCFC-142b), ozone (O3), least squares method, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
4280 Heat Transfer Modeling in Multi-Layer Cookware using Finite Element Method

Authors: Mohammad Reza Sedighi, Behnam Nilforooshan Dardashti

Abstract:

The high temperature degree and uniform Temperature Distribution (TD) on surface of cookware which contact with food are effective factors for improving cookware application. Additionally, the ability of pan material in retaining the heat and nonreactivity with foods are other significant properties. It is difficult for single material to meet a wide variety of demands such as superior thermal and chemical properties. Multi-Layer Plate (MLP) makes more regular TD. In this study the main objectives are to find the best structure (single or multi-layer) and materials to provide maximum temperature degree and uniform TD up side surface of pan. And also heat retaining of used metals with goal of improving the thermal quality of pan to economize the energy. To achieve this aim were employed Finite Element Method (FEM) for analyzing transient thermal behavior of applied materials. The analysis has been extended for different metals, we achieved the best temperature profile and heat retaining in Copper/ Stainless Steel MLP.

Keywords: Cookware, Energy optimization, Heat retaining, Laminated plate, Temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
4279 Pattern Recognition as an Internalized Motor Programme

Authors: M. Jändel

Abstract:

A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.

Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
4278 On Simulation based WSN Multi-Parametric Performance Analysis

Authors: Ch. Antonopoulos, Th. Kapourniotis, V. Triantafillou

Abstract:

Optimum communication and performance in Wireless Sensor Networks, constitute multi-facet challenges due to the specific networking characteristics as well as the scarce resource availability. Furthermore, it is becoming increasingly apparent that isolated layer based approaches often do not meet the demands posed by WSNs applications due to omission of critical inter-layer interactions and dependencies. As a counterpart, cross-layer is receiving high interest aiming to exploit these interactions and increase network performance. However, in order to clearly identify existing dependencies, comprehensive performance studies are required evaluating the effect of different critical network parameters on system level performance and behavior.This paper-s main objective is to address the need for multi-parametric performance evaluations considering critical network parameters using a well known network simulator, offering useful and practical conclusions and guidelines. The results reveal strong dependencies among considered parameters which can be utilized by and drive future research efforts, towards designing and implementing highly efficient protocols and architectures.

Keywords: Wireless sensor network, Communication Systems, cross-layer architectures, simulation based performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
4277 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus

Abstract:

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
4276 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour

Abstract:

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
4275 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
4274 Simulation of the Evacuation of Ships Carrying Dangerous Goods from Tsunami

Authors: Yoshinori Matsuura, Saori Iwanaga

Abstract:

The Great East Japan Earthquake occurred at 14:46 on Friday, March 11, 2011. It was the most powerful known earthquake to have hit Japan. The earthquake triggered extremely destructive tsunami waves of up to 40.5 meters in height. We focus on the ship’s evacuation from tsunami. Then we analyze about ships evacuation from tsunami using multi-agent simulation and we want to prepare for a coming earthquake. We developed a simulation model of ships that set sail from the port in order to evacuate from the tsunami considering the ship carrying dangerous goods.

Keywords: Multi-agent simulation, Ship’s evacuation, Tsunami.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
4273 Semantic Indexing Approach of a Corpora Based On Ontology

Authors: Mohammed Erritali

Abstract:

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.

Keywords: Semantic, indexing, corpora, WordNet, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
4272 Analysis of the EEG Signal for a Practical Biometric System

Authors: Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong, Nurul Nadia Ahmad

Abstract:

This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.

Keywords: Biometric, EEG, Wavelet Packet Decomposition, NeuralNetworks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
4271 Optimal Multilayer Perceptron Structure For Classification of HIV Sub-Type Viruses

Authors: Zeyneb Kurt, Oguzhan Yavuz

Abstract:

The feature of HIV genome is in a wide range because of it is highly heterogeneous. Hence, the infection ability of the virus changes related with different chemokine receptors. From this point, R5 and X4 HIV viruses use CCR5 and CXCR5 coreceptors respectively while R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the coreceptors of HIV genome. The aim of this study is to develop the optimal Multilayer Perceptron (MLP) for high classification accuracy of HIV sub-type viruses. To accomplish this purpose, the unit number in hidden layer was incremented one by one, from one to a particular number. The statistical data of R5X4, R5 and X4 viruses was preprocessed by the signal processing methods. Accessible residues of these virus sequences were extracted and modeled by Auto-Regressive Model (AR) due to the dimension of residues is large and different from each other. Finally the pre-processed dataset was used to evolve MLP with various number of hidden units to determine R5X4 viruses. Furthermore, ROC analysis was used to figure out the optimal MLP structure.

Keywords: Multilayer Perceptron, Auto-Regressive Model, HIV, ROC Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
4270 Fake Account Detection in Twitter Based on Minimum Weighted Feature set

Authors: Ahmed El Azab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting the fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, and then the determined factors are applied using different classification techniques. A comparison of the results of these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent researches in the same area; this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts; moreover, the study can be applied on different social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: Fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5838
4269 Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail, Deo Prasad

Abstract:

In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.

Keywords: Green homes, Malaysia, Sustainable BuildingCriteria, Sustainable homes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
4268 Using Multi-Thread Technology Realize Most Short-Path Parallel Algorithm

Authors: Chang-le Lu, Yong Chen

Abstract:

The shortest path question is in a graph theory model question, and it is applied in many fields. The most short-path question may divide into two kinds: Single sources most short-path, all apexes to most short-path. This article mainly introduces the problem of all apexes to most short-path, and gives a new parallel algorithm of all apexes to most short-path according to the Dijkstra algorithm. At last this paper realizes the parallel algorithms in the technology of C # multithreading.

Keywords: Dijkstra algorithm, parallel algorithms, multi-thread technology, most short-path, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
4267 Evaluating some Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
4266 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez

Abstract:

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
4265 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System

Authors: Phruksaphanrat B.

Abstract:

This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.

Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
4264 A Study on Finding Similar Document with Multiple Categories

Authors: R. Saraçoğlu, N. Allahverdi

Abstract:

Searching similar documents and document management subjects have important place in text mining. One of the most important parts of similar document research studies is the process of classifying or clustering the documents. In this study, a similar document search approach that includes discussion of out the case of belonging to multiple categories (multiple categories problem) has been carried. The proposed method that based on Fuzzy Similarity Classification (FSC) has been compared with Rocchio algorithm and naive Bayes method which are widely used in text mining. Empirical results show that the proposed method is quite successful and can be applied effectively. For the second stage, multiple categories vector method based on information of categories regarding to frequency of being seen together has been used. Empirical results show that achievement is increased almost two times, when proposed method is compared with classical approach.

Keywords: Document similarity, Fuzzy classification, Multiple categories, Text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
4263 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling

Authors: Belkacem Chikhaoui, Helene Pigot

Abstract:

Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.

Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
4262 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
4261 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
4260 Dependability Tools in Multi-Agent Support for Failures Analysis of Computer Networks

Authors: Myriam Noureddine

Abstract:

During their activity, all systems must be operational without failures and in this context, the dependability concept is essential avoiding disruption of their function. As computer networks are systems with the same requirements of dependability, this article deals with an analysis of failures for a computer network. The proposed approach integrates specific tools of the plat-form KB3, usually applied in dependability studies of industrial systems. The methodology is supported by a multi-agent system formed by six agents grouped in three meta agents, dealing with two levels. The first level concerns a modeling step through a conceptual agent and a generating agent. The conceptual agent is dedicated to the building of the knowledge base from the system specifications written in the FIGARO language. The generating agent allows producing automatically both the structural model and a dependability model of the system. The second level, the simulation, shows the effects of the failures of the system through a simulation agent. The approach validation is obtained by its application on a specific computer network, giving an analysis of failures through their effects for the considered network.

Keywords: Computer network, dependability, KB3 plat-form, multi-agent system, failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
4259 Aggregation Scheduling Algorithms in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.

Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
4258 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley

Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara

Abstract:

The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.

Keywords: Landslide, intensity-duration, rainfall threshold, Tropical Rainfall Measuring Mission, slope, inventory, early warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
4257 Differential Protection for Power Transformer Using Wavelet Transform and PNN

Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry

Abstract:

A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.

Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3131
4256 Evolutionary Query Optimization for Heterogeneous Distributed Database Systems

Authors: Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, Mahdi Sadeghizadeh

Abstract:

Due to new distributed database applications such as huge deductive database systems, the search complexity is constantly increasing and we need better algorithms to speedup traditional relational database queries. An optimal dynamic programming method for such high dimensional queries has the big disadvantage of its exponential order and thus we are interested in semi-optimal but faster approaches. In this work we present a multi-agent based mechanism to meet this demand and also compare the result with some commonly used query optimization algorithms.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3425
4255 Forecasting Rainfall in Thailand: A Case Study of Nakhon Ratchasima Province

Authors: N. Sopipan

Abstract:

In this paper, we study the rainfall using a time series for weather stations in Nakhon Ratchasima province in Thailand by various statistical methods to enable us to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. The ARIMA and Holt-Winter models were built on the basis of exponential smoothing. All the models proved to be adequate. Therefore it is possible to give information that can help decision makers establish strategies for the proper planning of agriculture, drainage systems and other water resource applications in Nakhon Ratchasima province. We obtained the best performance from forecasting with the ARIMA Model(1,0,1)(1,0,1)12.

Keywords: ARIMA Models, Exponential Smoothing, Holt- Winter model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
4254 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
4253 MABENA Strategic Management Model for Local Companies

Authors: Kaveh Mohammad Cyrus, Shadi Sanagoo

Abstract:

MABENA model is a complementary model in comparison with traditional models such as HCMS, CMS and etc. New factors, which have effects on preparation of strategic plans and their sequential order in MABENA model is the platform of presented road map in this paper.Study review shows, factors such as emerging new critical success factors for strategic planning, improvement of international strategic models, increasing the maturity of companies and emerging new needs leading to design a new model which can be responsible for new critical factors and solve the limitations of previous strategic management models. Preparation of strategic planning need more factors than introduced in traditional models. The needed factors includes determining future Critical Success Factors and competencies, defining key processes, determining the maturity of the processes, considering all aspects of the external environment etc. Description of aforementioned requirements, the outcomes and their order is developing and presenting the MABENA model-s road map in this paper. This study presents a road map for strategic planning of the Iranian organizations.

Keywords: Competitive Advantage, Process Maturity, StrategicPlanning, Strategic potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161