Search results for: Fuzzy classification rules.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2352

Search results for: Fuzzy classification rules.

882 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.

Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
881 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
880 Application of Association Rule Mining in Supplier Selection Criteria

Authors: A. Haery, N. Salmasi, M. Modarres Yazdi, H. Iranmanesh

Abstract:

In this paper the application of rule mining in order to review the effective factors on supplier selection is reviewed in the following three sections 1) criteria selecting and information gathering 2) performing association rule mining 3) validation and constituting rule base. Afterwards a few of applications of rule base is explained. Then, a numerical example is presented and analyzed by Clementine software. Some of extracted rules as well as the results are presented at the end.

Keywords: Association rule mining, data mining, supplierselection criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
879 Cheiloscopy and Dactylography in Relation to ABO Blood Groups: Egyptian vs. Malay Populations

Authors: Manal Hassan Abdel Aziz, Fatma Mohamed Magdy Badr El Dine, Nourhan Mohamed Mohamed Saeed

Abstract:

Establishing association between lip print patterns and those of fingerprints as well as blood groups is of fundamental importance in the forensic identification domain. The first aim of the current study was to determine the prevalent types of ABO blood groups, lip prints and fingerprints patterns in both studied populations. Secondly, to analyze any relation found between the different print patterns and the blood groups, which would be valuable in identification purposes. The present study was conducted on 60 healthy volunteers, (30 males and 30 females) from each of the studied population. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Michael Kuchen’s classification, respectively. The results show that the ulnar loop was the most frequent among both populations. Blood group A was the most frequent among Egyptians, while blood groups O and B were the predominant among Malaysians. Significant relations were observed between lip print patterns and fingerprint (in the second quadrant for Egyptian males and the first one for Malaysian). For Malaysian females, a statistically significant association was proved in the fourth quadrant. Regarding the blood groups, 89.5% of ulnar loops were significantly related to blood group A among Egyptian males. The results proved an association between the fingerprint pattern and the lip prints, as well as between the ABO blood group and the pattern of fingerprints. However, further researches with larger sample sizes need to be directed to approve the current results.

Keywords: ABO, cheiloscopy, dactylography, Egyptians, Malaysians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
878 A Two-Channel Secure Communication Using Fractional Chaotic Systems

Authors: Long Jye Sheu, Wei Ching Chen, Yen Chu Chen, Wei Tai Weng

Abstract:

In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.

Keywords: fractional chaotic systems, synchronization, securecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
877 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: Data mining, digital libraries, digital preservation, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
876 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering

Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala

Abstract:

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.

Keywords: e-Tendering, e-Procurement, public tendering, tender evaluation, tender evaluation committee, web-based group decision support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
875 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
874 sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: Classifiers, feature selection, locomotion, sEMG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
873 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: Land cover, mapping, multi-temporal, spectral indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
872 DD Models for Reports Building

Authors: Ljerka Hrženjak-Šego, Željko Polić, Zdravka Aljinović

Abstract:

In general, reports are a form of representing data in such way that user gets the information he needs. They can be built in various ways, from the simplest (“select from") to the most complex ones (results derived from different sources/tables with complex formulas applied). Furthermore, rules of calculations could be written as a program hard code or built in the database to be used by dynamic code. This paper will introduce two types of reports, defined in the DB structure. The main goal is to manage calculations in optimal way, keeping maintenance of reports as simple and smooth as possible.

Keywords: Data Definition diagram, Server Model Diagram, system modelling, reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
871 Fractal Shapes Description with Parametric L-systems and Turtle Algebra

Authors: Ikbal Zammouri, Béchir Ayeb

Abstract:

In this paper, we propose a new method to describe fractal shapes using parametric l-systems. First we introduce scaling factors in the production rules of the parametric l-systems grammars. Then we decorticate these grammars with scaling factors using turtle algebra to show the mathematical relation between l-systems and iterated function systems (IFS). We demonstrate that with specific values of the scaling factors, we find the exact relationship established by Prusinkiewicz and Hammel between l-systems and IFS.

Keywords: Fractal shapes, IFS, parametric l-systems, turtlealgebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
870 Directors’ Duties, Civil Liability, and the Business Judgment Rule under the Portuguese Legal Framework

Authors: Marisa Catarina da Conceição Dinis

Abstract:

The commercial companies’ management has suffered an important material and legal transformation in the last years, mainly related to the changes in the Portuguese legal framework and because of the fact they were recently object of great expansion. In fact, next to the smaller family businesses, whose management is regularly assumed by partners, companies with social investment highly scattered, whose owners are completely out from administration, are now arising. In those particular cases, the business transactions are much more complex and require from the companies’ managers a highly technical knowledge and some specific professionals’ skills and abilities. This kind of administration carries a high-level risk that can both result in great success or in great losses. Knowing that the administration performance can result in important losses to the companies, the Portuguese legislator has created a legal structure to impute them some responsibilities and sanctions. The main goal of this study is to analyze the Portuguese law and some jurisprudence about companies’ management rules and about the conflicts between the directors and the company. In order to achieve these purposes we have to consider, on the one hand, the legal duties directly connected to the directors’ functions and on the other hand the disrespect for those same rules. The Portuguese law in this matter, influenced by the common law, determines that the directors’ attitude should be guided by loyalty and honesty. Consequently, we must reflect in which cases the administrators should respond to losses that they might cause to companies as a result of their duties’ disrespect. In this way is necessary to study the business judgment rule wich is a rule that refers to a liability exclusion rule. We intend, in the same way, to evaluate if the civil liability that results from the directors’ duties disrespect can extend itself to those who have elected them ignoring or even knowing that they don´t have the necessary skills or appropriate knowledge to the position they hold. To charge directors’, without ruining entrepreneurship, charging, in the same way, those who select them reinforces the need for more responsible and cautious attitudes which will lead consequently to more confidence in the markets.

Keywords: Duty of loyalty, duty of care, business judgment rule, civil liability of directors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
869 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Authors: Reza Moosavi Mohseni, Wenjun Zhang, Jiling Cao

Abstract:

The aim of the present study is to detect the chaotic behavior in monetary economic relevant dynamical system. The study employs three different forms of Taylor rules: current, forward, and backward looking. The result suggests the existence of the chaotic behavior in all three systems. In addition, the results strongly represent that using expectations in policy rule especially rational expectation hypothesis can increase complexity of the system and leads to more chaotic behavior.

Keywords: Chaos theory, GMM estimator, Lyapunov Exponent, Monetary System, Taylor Rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
868 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: Land use, land cover, land surface temperature, remote sensing, urban heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
867 Simulation of the Large Hadrons Collisions Using Monte Carlo Tools

Authors: E. Al Daoud

Abstract:

In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model.

Keywords: Feynman rules, hadrons, Lagrangian, Monte Carlo, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
866 DEVS Modeling of Network Vulnerability

Authors: Hee Suk Seo, Tae Kyung Kim

Abstract:

As network components grow larger and more diverse, and as securing them on a host-by-host basis grow more difficult, more sites are turning to a network security model. We concentrate on controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. We present how the policy rules from vulnerabilities stored in SVDB (Simulation based Vulnerability Data Base) are inducted, and how to be used in PBN. In the network security environment, each simulation model is hierarchically designed by DEVS (Discrete EVent system Specification) formalism.

Keywords: SVDB, PBN, DEVS, Network security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
865 Risk-Management by Numerical Pattern Analysis in Data-Mining

Authors: M. Kargar, R. Mirmiran, F. Fartash, T. Saderi

Abstract:

In this paper a new method is suggested for risk management by the numerical patterns in data-mining. These patterns are designed using probability rules in decision trees and are cared to be valid, novel, useful and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. The patterns are analyzed through the produced matrices and some results are pointed out. By using the suggested method the direction of the functionality route in the systems can be controlled and best planning for special objectives be done.

Keywords: Analysis, Data-mining, Pattern, Risk Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
864 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.

Keywords: Fuzzy time series, neural network, forecasting error, average error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
863 Government of Ghana’s Budget: Its Functions, Coverage, Classification, and Integration with Chart of Accounts

Authors: Mohammed Sani Abdulai

Abstract:

Government budgets are the primary instruments for formulating and implementing a country’s fiscal policy objectives, development priorities, and the overall socio-economic aspirations of its people. Thus, in this paper, the author examined the Government of Ghana’s budgets with respect to their functions, coverage, classifications, and integration with the country’s chart of accounts. The author did so by amalgamating the research findings of extant literature with (a) the operational and procedural guidelines underpinning the formulation and execution of the government’s budgets; (b) the recommendations made by various development partners and thinktanks on reforming the country’s budgeting processes and procedures; and (c) the lessons Ghana could learn from the budget reform efforts of other countries. By way of research findings, the paper showed that the Government of Ghana’s budgets in terms of function are both eclectic and multidimensional. On coverage, the paper showed that the country’s budgets duly cover the revenues and expenditures of the general government (i.e., both the central and sub-national governments). Finally, on classifications, the paper noted with delight the Government of Ghana’s effort in providing classificatory codes to both its national development agenda and such international development goals as the AU’s Agenda 2063 and the UN’s Sustainable Development Goals. However, the paper found some significant lapses that require a complete overhaul and structuring on the integrations of its budget classifications with its chart of accounts. Thus, the paper concluded with a detailed examination of the challenges confronting the country’s current chart of accounts and recommendations for addressing them.

Keywords: Budget, budgetary transactions, budgetary governance, Chart of Accounts, classification, composition, coverage, Public Financial Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
862 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
861 Logic Program for Authorizations

Authors: Yun Bai

Abstract:

As a security mechanism, authorization is to provide access control to the system resources according to the polices and rules specified by the security strategies. Either by update or in the initial specification, conflicts in authorization is an issue needs to be solved. In this paper, we propose a new approach to solve conflict by using prioritized logic programs and discuss the uniqueness of its answer set. Addressing conflict resolution from logic programming viewpoint and the uniqueness analysis of the answer set provide a novel, efficient approach for authorization conflict resolution.

Keywords: authorization, formal specification, conflict resolution, prioritized logic program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
860 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
859 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: S. Areerachakul, N. Ployong, S. Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: Artificial neural network, classification, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
858 Periodic Storage Control Problem

Authors: Ru-Shuo Sheu, Han-Hsin Chou, Te-Shyang Tan

Abstract:

Considering a reservoir with periodic states and different cost functions with penalty, its release rules can be modeled as a periodic Markov decision process (PMDP). First, we prove that policy- iteration algorithm also works for the PMDP. Then, with policy- iteration algorithm, we obtain the optimal policies for a special aperiodic reservoir model with two cost functions under large penalty and give a discussion when the penalty is small.

Keywords: periodic Markov decision process, periodic state, policy-iteration algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
857 Quranic Braille System

Authors: Abdallah M. Abualkishik, Khairuddin Omar

Abstract:

This article concerned with the translation of Quranic verses to Braille symbols, by using Visual basic program. The system has the ability to translate the special vibration for the Quran. This study limited for the (Noun + Scoon) vibrations. It builds on an existing translation system that combines a finite state machine with left and right context matching and a set of translation rules. This allows to translate the Arabic language from text to Braille symbols after detect the vibration for the Quran verses.

Keywords: Braille, Quran vibration, Finite State Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
856 A User - Requirements Approach in Medical Devices Maintenance System Development: A Case Study from an Industry Perspective

Authors: Manar AlJazzazi, Mohammed Rawashdeh, Tariq Alshawaheen, Aktham Malkawi

Abstract:

This paper is a part of research, in which the way the biomedical engineers follow in their work is analyzed. The goal of this paper is to present a method for specification of user requirements in the medical devices maintenance process. Data Gathering Methods, Research Model Phases and Descriptive Analysis is presented. These technology and verification rules can be implemented in Medical devices maintenance management process to the maintenance process.

Keywords: Quality Function Deployment (QFD), User - requirements approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
855 Age and Second Language Acquisition: A Case Study from Maldives

Authors: Aaidha Hammad

Abstract:

The age a child to be exposed to a second language is a controversial issue in communities such as the Maldives where English is taught as a second language. It has been observed that different stakeholders have different viewpoints towards the issue. Some believe that the earlier children are exposed to a second language, the better they learn, while others disagree with the notion. Hence, this case study investigates whether children learn a second language better when they are exposed at an earlier age or not. The spoken and written data collected confirm that earlier exposure helps in mastering the sound pattern and speaking fluency with more native-like accent, while a later age is better for learning more abstract and concrete aspects such as grammar and syntactic rules.

Keywords: Age, development of language skills, fluency, second language acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3638
854 Multi-agent Data Fusion Architecture for Intelligent Web Information Retrieval

Authors: Amin Milani Fard, Mohsen Kahani, Reza Ghaemi, Hamid Tabatabaee

Abstract:

In this paper we propose a multi-agent architecture for web information retrieval using fuzzy logic based result fusion mechanism. The model is designed in JADE framework and takes advantage of JXTA agent communication method to allow agent communication through firewalls and network address translators. This approach enables developers to build and deploy P2P applications through a unified medium to manage agent-based document retrieval from multiple sources.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
853 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701