Search results for: medical diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 941

Search results for: medical diagnosis

821 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
820 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
819 Development of an Immunoassay Platform for Diagnosis of Acute Kidney Injury

Authors: T. Bovornvirakit, K. Viravaidya

Abstract:

Acute kidney injury (AKI) is a new worldwide public health problem. A diagnosis of this disease using creatinine is still a problem in clinical practice. Therefore, a measurement of biomarkers responsible for AKI has received much attention in the past couple years. Cytokine interleukin-18 (IL-18) was reported as one of the early biomarkers for AKI. The most commonly used method to detect this biomarker is an immunoassay. This study used a planar platform to perform an immunoassay using fluorescence for detection. In this study, anti-IL-18 antibody was immobilized onto a microscope slide using a covalent binding method. Make-up samples were diluted at the concentration between 10 to 1000 pg/ml to create a calibration curve. The precision of the system was determined using a coefficient of variability (CV), which was found to be less than 10%. The performance of this immunoassay system was compared with the measurement from ELISA.

Keywords: Acute kidney injury, Acute renal failure, Antibody immobilization, Interleukin-18

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
818 Emotion Classification by Incremental Association Language Features

Authors: Jheng-Long Wu, Pei-Chann Chang, Shih-Ling Chang, Liang-Chih Yu, Jui-Feng Yeh, Chin-Sheng Yang

Abstract:

The Major Depressive Disorder has been a burden of medical expense in Taiwan as well as the situation around the world. Major Depressive Disorder can be defined into different categories by previous human activities. According to machine learning, we can classify emotion in correct textual language in advance. It can help medical diagnosis to recognize the variance in Major Depressive Disorder automatically. Association language incremental is the characteristic and relationship that can discovery words in sentence. There is an overlapping-category problem for classification. In this paper, we would like to improve the performance in classification in principle of no overlapping-category problems. We present an approach that to discovery words in sentence and it can find in high frequency in the same time and can-t overlap in each category, called Association Language Features by its Category (ALFC). Experimental results show that ALFC distinguish well in Major Depressive Disorder and have better performance. We also compare the approach with baseline and mutual information that use single words alone or correlation measure.

Keywords: Association language features, Emotion Classification, Overlap-Category Feature, Nature Language Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
817 Rolling Element Bearing Diagnosis by Improved Envelope Spectrum: Optimal Frequency Band Selection

Authors: Juan David Arango, Alejandro Restrepo-Martinez

Abstract:

The Rolling Element Bearing (REB) vibration diagnosis is worth of special interest by the variety of REB and the wide necessity of those elements in industrial applications. The presence of a localized fault in a REB gives rise to a vibrational response, characterized by the modulation of a carrier signal. Frequency content of carrier signal (Spectral Frequency –f) is mainly related to resonance frequencies of the REB. This carrier signal is modulated by another signal, governed by the periodicity of the fault impact (Cyclic Frequency –α). In this sense, REB fault vibration response gives rise to a second-order cyclostationary signal. Second order cyclostationary signals could be represented in a bi-spectral map, where Spectral Coherence –SCoh are plotted against f and α. The Improved Envelope Spectrum –IES, is a useful approach to execute REB fault diagnosis. IES could be applied by the integration of SCoh over a predefined bandwidth on the f axis. Approaches to select f-bandwidth have been recently exposed by the definition of a metric which intends to evaluate the magnitude of the IES at the fault characteristics frequencies. This metric is represented in a 1/3-binary tree as a function of the frequency bandwidth and centre. Based on this binary tree the optimal frequency band is selected. However, some advantages have been seen if the metric is changed, which in fact tends to dictate different optimal f-bandwidth and so improve the IES representation. This paper evaluates the behaviour of the IES from a different metric optimization. This metric is based on the sample correlation coefficient, detecting high peaks in the selected frequencies while penalizing high peaks in the neighbours of the selected frequencies. Prior results indicate an improvement on the signal-noise ratio (SNR) on around 86% of samples analysed, which belong to IMS database.

Keywords: Sample Correlation IESFOgram, cyclostationary analysis, improved envelope spectrum, IES, rolling element bearing diagnosis, spectral coherence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
816 Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application

Authors: Mohd Kamir Yusof

Abstract:

This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.

Keywords: Medical Image Retrieval, Dominant ColorDescriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
815 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests

Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.

Keywords: Heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
814 ANN-Based Classification of Indirect Immuno Fluorescence Images

Authors: P. Soda, G.Iannello

Abstract:

In this paper we address the issue of classifying the fluorescent intensity of a sample in Indirect Immuno-Fluorescence (IIF). Since IIF is a subjective, semi-quantitative test in its very nature, we discuss a strategy to reliably label the image data set by using the diagnoses performed by different physicians. Then, we discuss image pre-processing, feature extraction and selection. Finally, we propose two ANN-based classifiers that can separate intrinsically dubious samples and whose error tolerance can be flexibly set. Measured performance shows error rates less than 1%, which candidates the method to be used in daily medical practice either to perform pre-selection of cases to be examined, or to act as a second reader.

Keywords: Artificial neural networks, computer aided diagnosis, image classification, indirect immuno-fluorescence, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
813 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
812 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis

Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani

Abstract:

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.

Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
811 Survey on Awareness, Knowledge and Practices: Managing Osteoporosis among Practitioners in a Tertiary Hospital, Malaysia

Authors: P. H. Tee, S. M. Zamri, K. M. Kasim, S. K. Tiew

Abstract:

This study evaluates the management of osteoporosis in a tertiary care government hospital in Malaysia. As the number of admitted patients having osteoporotic fractures is on the rise, osteoporotic medications are an increasing financial burden to government hospitals because they account for half of the orthopedic budget and expenditure. Comprehensive knowledge among practitioners is important to detect early and avoid this preventable disease and its serious complications. The purpose of this study is to evaluate the awareness, knowledge, and practices in managing osteoporosis among practitioners in Hospital Tengku Ampuan Rahimah (HTAR), Klang. A questionnaire from an overseas study in managing osteoporosis among primary care physicians is adapted to Malaysia’s Clinical Practice Guideline of Osteoporosis 2012 (revised 2015) and international guidelines were distributed to all orthopedic practitioners in HTAR Klang (including surgeons, orthopedic medical officers), endocrinologists, rheumatologists and geriatricians. The participants were evaluated on their expertise in the diagnosis, prevention, treatment decision and medications for osteoporosis. Collected data were analyzed for all descriptive and statistical analyses as appropriate. All 45 participants responded to the questionnaire. Participants scored highest on expertise in prevention, followed by diagnosis, treatment decision and lastly, medication. Most practitioners stated that own-initiated continuing professional education from articles and books was the most effective way to update their knowledge, followed by attendance in conferences on osteoporosis. This study confirms the importance of comprehensive training and education regarding osteoporosis among tertiary care physicians and surgeons, predominantly in pharmacotherapy, to deliver wholesome care for osteoporotic patients.

Keywords: Awareness, knowledge, osteoporosis, practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
810 Cross Signal Identification for PSG Applications

Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu

Abstract:

The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.

Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
809 Consideration of Criteria of Vibration Comfort of People in Diagnosis and Design of Buildings

Authors: Kawecki J., Kowalska-Koczwara A., Stypula K.

Abstract:

The increasing influence of traffic on building objects and people residing in them should be taken into account in diagnosis and design. Users of buildings expect that vibrations occurring in their environment, will not only lead to damage to the building or its accelerated wear, but neither would affect the required comfort in rooms designed to accommodate people. This article describes the methods and principles useful in designing and building diagnostics located near transportation routes, with particular emphasis on the impact of traffic vibration on people in buildings. It also describes the procedures used in obtaining information about the parameters of vibrations in different cases of diagnostics and design. A universal algorithm of procedure in diagnostics and design of buildings taking into account assurance of human vibration comfort of people residing in the these buildings was presented.

Keywords: diagnostics, influence of public transport, influence of vibrations on humans, transport vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
808 Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots

Authors: A. P. Anvar, T. Dowling, T. Putland, A. M. Anvar, S.Grainger

Abstract:

This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.

Keywords: Intelligent Techniques, Condition Monitoring Systems, ICMS, Robots, Fault, Unmanned Aerial Vehicle, UAV, Neural Networks, Diagnosis, Fuzzy Logic, Prognosis, Remedy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
807 Comparison between Different Classifications of Periodontal Diseases and Their Advantages

Authors: Ilma Robo, Saimir Heta, Merilda Tarja, Sonila Kapaj, Eduart Kapaj, Geriona Lasku

Abstract:

The classification of periodontal diseases has changed significantly in favor of simplifying the protocol of diagnosis and periodontal treatment. This review study aims to highlight the latest publications in the new periodontal disease classification, talking about the most significant differences versus the old classification with the tendency to express the advantages or disadvantages of clinical application. The aim of the study also includes the growing tendency to link the way of classification of periodontal diseases with predetermined protocols of periodontal treatment of the diagnoses included in the classification. The new classification of periodontal diseases is rather comprehensive in its subdivisions, as the disease is viewed in its entirety, with the biological dimensions of the disease, the degree of aggravation and progression of the disease, in relation to risk factors, predisposition to patient susceptibility and impact of periodontal disease to the general health status of the patient.

Keywords: Periodontal diseases, clinical application, periodontal treatment, oral diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
806 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
805 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
804 An Automated Method to Segment and Classify Masses in Mammograms

Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham

Abstract:

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

Keywords: classification, computer-aided detection, featureextraction, mass detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
803 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
802 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade

Abstract:

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
801 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
800 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: BIT, fault detection, fault isolation, testability modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
799 Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text

Authors: Phanu Waraporn

Abstract:

This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.

Keywords: Medical Ontology, Knowledge Integration, Machine Learning, Medical Coding, Text Assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
798 Economic Policy of Tourism and the Development Tendencies of Medical Wellness Resorts in Georgia

Authors: G. Erkomaishvili, E. Kharaishvili, M. Chavleishvili, N. Sagareishvili

Abstract:

This paper discusses the current condition of tourism and its economic policy in Georgia. It analyzes and studies wellness tourism, as one of the directions of tourism; the newest niche in the wellness industry – triggering wellness resorts with medical ideology. The paper discusses the development tendencies of medical wellness resorts in Georgia and its main economic preferences. The main finding of the research is that Georgia is a unique place in the world according to the variety of medical recourses. This makes the opportunity to create and successfully operate medical wellness resorts, as well as develop it as a brand for Georgia in the world. The research represents the development strategies of tourism and its medical wellness resorts in Georgia, and offers recommendations based on the relevant conclusions.

Keywords: Economic policy of tourism, medical wellness resorts, tourism, wellness industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
797 A Methodology for Quality Problems Diagnosis in SMEs

Authors: Humberto N. Teixeira, Isabel S. Lopes, Sérgio D. Sousa

Abstract:

This article proposes a new methodology to be used by SMEs (Small and Medium enterprises) to characterize their performance in quality, highlighting weaknesses and area for improvement. The methodology aims to identify the principal causes of quality problems and help to prioritize improvement initiatives. This is a self-assessment methodology that intends to be easy to implement by companies with low maturity level in quality. The methodology is organized in six different steps which includes gathering information about predetermined processes and subprocesses of quality management, defined based on the well-known Juran-s trilogy for quality management (Quality planning, quality control and quality improvement) and, predetermined results categories, defined based on quality concept. A set of tools for data collecting and analysis, such as interviews, flowcharts, process analysis diagrams and Failure Mode and effects Analysis (FMEA) are used. The article also presents the conclusions obtained in the application of the methodology in two cases studies.

Keywords: Continuous improvement, Diagnosis, Quality Management, Self-assessment, SMEs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
796 Towards Medical Device Maintenance Workflow Monitoring

Authors: Beatriz López, Joaquim Meléndez, Heiko Wissel, Henning Haase, Kathleen Laatz, Oliver S. Grosser

Abstract:

Concerning the inpatient care the present situation is characterized by intense charges of medical technology into the clinical daily routine and an ever stronger integration of special techniques into the clinical workflow. Medical technology is by now an integral part of health care according to consisting general accepted standards. Purchase and operation thereby represent an important economic position and both are subject of everyday optimisation attempts. For this purpose by now exists a huge number of tools which conduce more likely to a complexness of the problem by a comprehensive implementation. In this paper the advantages of an integrative information-workflow on the life-cycle-management in the region of medical technology are shown.

Keywords: Medical equipment maintenance, maintenanceworkflow, medical equipment management, optimisation ofworkflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
795 Measuring the Efficiency of Medical Equipment

Authors: Panagiotis H. Tsarouhas

Abstract:

the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.

Keywords: Reliability, Availability, Series-parallel System, medical equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
794 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
793 Goal-Based Request Cloud Resource Broker in Medical Application

Authors: Mohamad Izuddin Nordin, Azween Abdullah, Mahamat Issa Hassan

Abstract:

In this paper, cloud resource broker using goalbased request in medical application is proposed. To handle recent huge production of digital images and data in medical informatics application, the cloud resource broker could be used by medical practitioner for proper process in discovering and selecting correct information and application. This paper summarizes several reviewed articles to relate medical informatics application with current broker technology and presents a research work in applying goal-based request in cloud resource broker to optimize the use of resources in cloud environment. The objective of proposing a new kind of resource broker is to enhance the current resource scheduling, discovery, and selection procedures. We believed that it could help to maximize resources allocation in medical informatics application.

Keywords: Broker, Cloud Computing, Medical Informatics, Resources Discovery, Resource Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
792 Importance of Knowledge in the Interdisciplinary Production Processes of Innovative Medical Tools

Authors: Katarzyna Mleczko

Abstract:

Processes of production of innovative medical tools have interdisciplinary character. They consist of direct and indirect close cooperation of specialists of different scientific branches. The Knowledge they have seems to be important for undertaken design, construction and manufacturing processes. The Knowledge exchange between participants of these processes is therefore crucial for the final result, which are innovative medical products. The paper draws attention to the necessity of feedback from the end user to the designer / manufacturer of medical tools which will allow for more accurate understanding of user needs. The study describes prerequisites of production processes of innovative medical (surgical) tools including participants and category of knowledge resources occurring in these processes. They are the result of research in selected Polish organizations involved in the production of medical instruments and are the basis for further work on the development of knowledge sharing model in interdisciplinary teams geographically dispersed.

Keywords: Interdisciplinary production processes, knowledge exchange, knowledge sharing, medical tools, user-centered design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522