Search results for: learning ability
2859 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula
Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan
Abstract:
This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.
Keywords: Simulation-based teaching, hands-on learning, feedback-based learning, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17252858 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922857 Integrated Learning in Engineering Services: A Conceptual Framework
Authors: Satya Pilla
Abstract:
This study explores how the mechanics of learning paves the way to engineering innovation. Theories related to learning in the new product/service innovation are reviewed from an organizational perspective, behavioral perspective, and engineering perspective. From this, an engineering team-s external interactions for knowledge brokering and internal composition for skill balance are examined from a learning and innovation viewpoints. As a result, an integrated learning model is developed by reconciling the theoretical perspectives as well as developing propositions that emphasize the centrality of learning, and its drivers, in the engineering product/service development. The paper also provides a review and partial validation of the propositions using the results of a previously published field study in the aerospace industry.Keywords: Engineering Services, Integrated Learning, NewProduct Development, Service Innovation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12882856 Promoting Reflection through Action Learning in a 3D Virtual World
Authors: R.L. Sanders, L. McKeown
Abstract:
An international cooperation between educators in Australia and the US has led to a reconceptualization of the teaching of a library science course at Appalachian State University. The pedagogy of Action Learning coupled with a 3D virtual learning environment immerses students in a social constructivist learning space that incorporates and supports interaction and reflection. The intent of this study was to build a bridge between theory and practice by providing students with a tool set that promoted personal and social reflection, and created and scaffolded a community of practice. Besides, action learning is an educational process whereby the fifty graduate students experienced their own actions and experience to improve performance.Keywords: action learning, action research, reflection, metacognition, virtual worlds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14212855 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.
Keywords: Computer science education, project and module based, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34502854 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8122853 Extending E-learning systems based on Clause-Rule model
Authors: Keisuke Nakamura, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
E-Learning systems are used by many learners and teachers. The developer is developing the e-Learning system. However, the developer cannot do system construction to satisfy all of users- demands. We discuss a method of constructing e-Learning systems where learners and teachers can design, try to use, and share extending system functions that they want to use; which may be nally added to the system by system managers.Keywords: Clause-Rule-Model, database-access, e-Learning, Web-Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772852 Using Multimedia in Computer Based Learning (CBL) A Case Study: Teaching Science to Student
Authors: Maryam Honarmand
Abstract:
Regarding to the fast growth of computer, internet, and virtual learning in our country (Iran) and need computer-based learning systems and multimedia tools as an essential part of such education, designing and implementing such systems would help teach different field such as science. This paper describes the basic principle of multimedia. At the end, with a description of learning science to the infant students, the method of this system will be explained.
Keywords: Multimedia tools, computer based learning, science, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14902851 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.
Keywords: E-learning, physiological index, physiological signal, state of learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15132850 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14292849 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3782848 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12682847 Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles
Authors: Zenaide Carvalho da Silva, Andrey Ricardo Pimentel, Leandro Rodrigues Ferreira
Abstract:
Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.
Keywords: Adaptation, interface, learning styles, learning objects, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5322846 Learning of Class Membership Values by Ellipsoidal Decision Regions
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.
Keywords: Ellipsoid, genetic algorithm, decision regions, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14272845 Agent-based Simulation for Blood Glucose Control in Diabetic Patients
Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour
Abstract:
This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithmsKeywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21972844 Socioculture and Cognitivist Perspectives on Language and Communication Barriers in Learning
Authors: David Hallberg
Abstract:
It is believed that major account on language diversity must be taken in learning, and especially in learning using ICT. This paper-s objective is to exhibit language and communication barriers in learning, to approach the topic from socioculture and cognitivist perspectives, and to give exploratory solutions of handling such barriers. The review is mainly conducted by approaching the journal Computers & Education, but also an initially broad search was conducted. The results show that not much attention is paid on language and communication barriers in an immediate relation to learning using ICT. The results shows, inter alia, that language and communication barriers are caused because of not enough account is taken on both the individual-s background and the technology.
Keywords: communication barriers, cognitive, ICT, language barriers, learning, socioculture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23582843 Improved Rare Species Identification Using Focal Loss Based Deep Learning Models
Authors: Chad Goldsworthy, B. Rajeswari Matam
Abstract:
The use of deep learning for species identification in camera trap images has revolutionised our ability to study, conserve and monitor species in a highly efficient and unobtrusive manner, with state-of-the-art models achieving accuracies surpassing the accuracy of manual human classification. The high imbalance of camera trap datasets, however, results in poor accuracies for minority (rare or endangered) species due to their relative insignificance to the overall model accuracy. This paper investigates the use of Focal Loss, in comparison to the traditional Cross Entropy Loss function, to improve the identification of minority species in the “255 Bird Species” dataset from Kaggle. The results show that, although Focal Loss slightly decreased the accuracy of the majority species, it was able to increase the F1-score by 0.06 and improve the identification of the bottom two, five and ten (minority) species by 37.5%, 15.7% and 10.8%, respectively, as well as resulting in an improved overall accuracy of 2.96%.
Keywords: Convolutional neural networks, data imbalance, deep learning, focal loss, species classification, wildlife conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14162842 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17682841 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School
Authors: Diriba Gemechu, Lamessa Abebe
Abstract:
The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.Keywords: Cooperative learning, academic achievement, experimental group, comparison group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21072840 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9412839 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.
Keywords: Learning style, VARK, sensory preferences, identification model, didactic practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54162838 Towards an Understanding of how Information Technology Enables Innovation – The Innovators- Perceptions
Authors: R. Nootjarat, W. Chantatub, P. Chongstitvatana
Abstract:
This research attempts to explore gaps in Information Systems (IS) and innovation literatures by developing a model of Information Technology (IT) capability in enabling innovation. The research was conducted by using semi-structured interview with six innovators in business consulting, financial, healthcare and academic organizations. The interview results suggest four elements of ITenabled innovation capability which are information (ability to capture ideas and knowledge), connectivity (ability to bridge geographical boundary and mobilize human resources), communication (ability to attain and engage relationships between human resources) and transformation (ability to change the functions and process integrations) in defining IT-enabled innovation platform. The results also suggests innovators- roles and IT capability.Keywords: Innovation Platform, IT Capability, Innovators, Innovation Delivery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13942837 E-learning for Professional Education of Personnel in a Hospital
Authors: G. Cossu, A. Esposito, G. Picco, C. Scrizzi, A. Tartaglia, E. Tresso
Abstract:
A collaboration among the Hospital S. Giovanni Battista of Turin, the Politecnico of Turin, and the MUST company is described. The content of the collaboration has been and is the use of ICT-s, e-learning, and blended learning for the internal professional education, training, and keeping up to date of the personnel of the hospital. A platform for the delivery of the teaching materials has been built, including an evaluation and self-evaluation tool. The first on line courses have been developed and delivered and many more are in preparation. The first results of the monitoring of the efficacy of the online education have been positive.Keywords: E-learning, blended learning, on line education, ICT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13552836 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment
Authors: Rishi Ruttun
Abstract:
One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.
Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16782835 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study
Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker
Abstract:
In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.
Keywords: Admissions, algorithms, cloud computing, differentiation, fog computing, leveling, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7172834 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments
Authors: Yi-Chun Chang, Jian-Wei Li
Abstract:
Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.
Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14572833 Dental Students’ Attitude towards Problem-Based Learning before and after Implementing 3D Electronic Dental Models
Authors: Hai Ming Wong, Kuen Wai Ma, Lavender Yu Xin Yang, Yanqi Yang
Abstract:
Objectives: In recent years, the Faculty of Dentistry of the University of Hong Kong have extended the implementation of 3D electronic models (e-models) into problem-based learning (PBL) of the Bachelor of Dental Surgery (BDS) curriculum, aiming at mutual enhancement of PBL teaching quality and the students’ skills in using e-models. This study focuses on the effectiveness of e-models serving as a tool to enhance the students’ skills and competences in PBL. Methods: The questionnaire surveys are conducted to measure 50 fourth-year BDS students’ attitude change between beginning and end of blended PBL tutorials. The response rate of this survey is 100%. Results: The results of this study show the students’ agreement on enhancement of their learning experience after e-model implementation and their expectation to have more blended PBL courses in the future. The potential of e-models in cultivating students’ self-learning skills reduces their dependence on others, while improving their communication skills to argue about pros and cons of different treatment options. The students’ independent thinking ability and problem solving skills are promoted by e-model implementation, resulting in better decision making in treatment planning. Conclusion: It is important for future dental education curriculum planning to cope with the students’ needs, and offer support in the form of software, hardware and facilitators’ assistance for better e-model implementation.
Keywords: Problem-Based learning, curriculum, dental education, 3-D electronic models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65162832 Collaborative Professional Education for e-Teaching in Networked Schools
Authors: Ken Stevens
Abstract:
Networked schools have become a feature of education systems in countries that seek to provide learning opportunities in schools located beyond major centres of population. The internet and e-learning have facilitated the development of virtual educational structures that complement traditional schools, encouraging collaborative teaching and learning to proceed. In rural New Zealand and in the Atlantic Canadian province of Newfoundland and Labrador, e-learning is able to provide new ways of organizing teaching, learning and the management of educational opportunities. However, the future of e-teaching and e-learning in networked schools depends on the development of professional education programs that prepare teachers for collaborative teaching and learning environments in which both virtual and traditional face to face instruction co-exist.Keywords: Advanced Placement, Cybercells, Extranet, Intranet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14092831 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.
Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10992830 Software Engineering Mobile Learning Software Solution Using Task Based Learning Approach
Authors: Bekim Fetaji, Majlinda Fetaji
Abstract:
The development and use of mobile devices as well as its integration within education systems to deliver electronic contents and to support real-time communications was the focus of this research. In order to investigate the software engineering issues in using mobile devices a research on electronic content was initiated. The Developed MP3 mobile software solution was developed as a prototype for testing and developing a strategy for designing a usable m-learning environment. The mobile software solution was evaluated using mobile device using the link: http://projects.seeu.edu.mk/mlearn. The investigation also tested the correlation between the two mobile learning indicators: electronic content and attention, based on the Task Based learning instructional method. The mobile software solution ''M-Learn“ was developed as a prototype for testing the approach and developing a strategy for designing usable m-learning environment. The proposed methodology is about what learning modeling approach is more appropriate to use when developing mobile learning software.
Keywords: M-learning, mobile software development, mobiledevices, learning instructions, task based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642