Search results for: data mining technique
9691 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier
Authors: M. Govindarajan, R. M.Chandrasekaran
Abstract:
Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15539690 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis
Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini
Abstract:
Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14719689 Mining Frequent Patterns with Functional Programming
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21349688 A Tree Based Association Rule Approach for XML Data with Semantic Integration
Authors: D. Sasikala, K. Premalatha
Abstract:
The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter’s dataset and the results show that the proposed method outperforms well.
Keywords: Semi--structured Document, Tree based Association Rule (TAR), Semantic Association Rule Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23519687 Risk Classification of SMEs by Early Warning Model Based on Data Mining
Authors: Nermin Ozgulbas, Ali Serhan Koyuncugil
Abstract:
One of the biggest problems of SMEs is their tendencies to financial distress because of insufficient finance background. In this study, an Early Warning System (EWS) model based on data mining for financial risk detection is presented. CHAID algorithm has been used for development of the EWS. Developed EWS can be served like a tailor made financial advisor in decision making process of the firms with its automated nature to the ones who have inadequate financial background. Besides, an application of the model implemented which covered 7,853 SMEs based on Turkish Central Bank (TCB) 2007 data. By using EWS model, 31 risk profiles, 15 risk indicators, 2 early warning signals, and 4 financial road maps has been determined for financial risk mitigation.
Keywords: Early Warning Systems, Data Mining, Financial Risk, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33879686 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.
Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20109685 A Comparative Study of Page Ranking Algorithms for Information Retrieval
Authors: Ashutosh Kumar Singh, Ravi Kumar P
Abstract:
This paper gives an introduction to Web mining, then describes Web Structure mining in detail, and explores the data structure used by the Web. This paper also explores different Page Rank algorithms and compare those algorithms used for Information Retrieval. In Web Mining, the basics of Web mining and the Web mining categories are explained. Different Page Rank based algorithms like PageRank (PR), WPR (Weighted PageRank), HITS (Hyperlink-Induced Topic Search), DistanceRank and DirichletRank algorithms are discussed and compared. PageRanks are calculated for PageRank and Weighted PageRank algorithms for a given hyperlink structure. Simulation Program is developed for PageRank algorithm because PageRank is the only ranking algorithm implemented in the search engine (Google). The outputs are shown in a table and chart format.Keywords: Web Mining, Web Structure, Web Graph, LinkAnalysis, PageRank, Weighted PageRank, HITS, DistanceRank, DirichletRank,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28349684 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18979683 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15419682 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses
Authors: Erin Lynne Plettenberg, Jeremy Vickery
Abstract:
In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.
Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9369681 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm
Authors: Mourad Ykhlef, Hebah ElGibreen
Abstract:
Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20259680 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14979679 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4499678 Web Content Mining: A Solution to Consumer's Product Hunt
Authors: Syed Salman Ahmed, Zahid Halim, Rauf Baig, Shariq Bashir
Abstract:
With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.
Keywords: Data mining, web mining, search engines, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20529677 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33769676 Data Mining Applied to the Predictive Model of Triage System in Emergency Department
Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao
Abstract:
The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23089675 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19629674 Modelling of Powered Roof Supports Work
Authors: Marcin Michalak
Abstract:
Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.Keywords: Machine modelling, underground mining, coal mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19259673 The Research of Fuzzy Classification Rules Applied to CRM
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
In the era of great competition, understanding and satisfying customers- requirements are the critical tasks for a company to make a profits. Customer relationship management (CRM) thus becomes an important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a large quantity of data to discover meaningful patterns and rules. Among all methods, well-known association rule is most commonly seen. This paper is based on Apriori algorithm and uses genetic algorithms combining a data mining method to discover fuzzy classification rules. The mined results can be applied in CRM to help decision marker make correct business decisions for marketing strategies.Keywords: Customer relationship management (CRM), Data mining, Apriori algorithm, Genetic algorithm, Fuzzy classification rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16619672 Exploring Performance-Based Music Attributes for Stylometric Analysis
Authors: Abdellghani Bellaachia, Edward Jimenez
Abstract:
Music Information Retrieval (MIR) and modern data mining techniques are applied to identify style markers in midi music for stylometric analysis and author attribution. Over 100 attributes are extracted from a library of 2830 songs then mined using supervised learning data mining techniques. Two attributes are identified that provide high informational gain. These attributes are then used as style markers to predict authorship. Using these style markers the authors are able to correctly distinguish songs written by the Beatles from those that were not with a precision and accuracy of over 98 per cent. The identification of these style markers as well as the architecture for this research provides a foundation for future research in musical stylometry.
Keywords: Music Information Retrieval, Music Data Mining, Stylometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16799671 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making
Authors: Nevena Stolba, A Min Tjoa
Abstract:
Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.
Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38109670 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Authors: Harpreet Singh
Abstract:
Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.
Keywords: Web usage mining, log file, web mining, data mining, deep log analyser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10629669 A Robust Data Hiding Technique based on LSB Matching
Authors: Emad T. Khalaf, Norrozila Sulaiman
Abstract:
Many researchers are working on information hiding techniques using different ideas and areas to hide their secrete data. This paper introduces a robust technique of hiding secret data in image based on LSB insertion and RSA encryption technique. The key of the proposed technique is to encrypt the secret data. Then the encrypted data will be converted into a bit stream and divided it into number of segments. However, the cover image will also be divided into the same number of segments. Each segment of data will be compared with each segment of image to find the best match segment, in order to create a new random sequence of segments to be inserted then in a cover image. Experimental results show that the proposed technique has a high security level and produced better stego-image quality.Keywords: steganography; LSB Matching; RSA Encryption; data segments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22199668 Q-Map: Clinical Concept Mining from Clinical Documents
Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala
Abstract:
Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7799667 Application of Data Mining Tools to Predicate Completion Time of a Project
Authors: Seyed Hossein Iranmanesh, Zahra Mokhtari
Abstract:
Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.Keywords: Data Mining Techniques, Earned Duration Method, Earned Value, Estimate At Completion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18029666 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.
Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21319665 Decision Support System Based on Data Warehouse
Authors: Yang Bao, LuJing Zhang
Abstract:
Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.
Keywords: Decision Support System, Data Warehouse, Data Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38619664 About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels
Authors: M. Moistsrapishvili, I. Ugrekhelidze, T. Baramashvili, D. Malaghuradze
Abstract:
At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.Keywords: Mining pressure, Reconstruction of tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16769663 Representing Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.
Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16209662 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277