Search results for: Anodic bonding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 131

Search results for: Anodic bonding

11 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls

Authors: Berna Istegun, Erkan Celebi

Abstract:

The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.

Keywords: Triplet shears tests, retrofitting, seismic fabric, perforated brickwork, expanded glass granular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
10 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres

Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar

Abstract:

This investigation aims to characterize the effect of corncob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The CC is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the CC powder at varying percentages of 1-4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without CC replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the CC powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% CC powder as filler materials had the optimum properties, satisfying the minimum requirements of relevant standards for fibre cement flat sheets.

Keywords: Kraft pulp fibre, fibre-cement board, agricultural waste, sustainability, building applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
9 IRIS: An Interactive Video Game for Children with Long-Term Illness in Hospitals

Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria

Abstract:

Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialized software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarize and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, re-evaluate their perceptions about hospitalization, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalized peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective-taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimize escapism and feelings of exclusion and can flexibly be adapted to offer post-treatment and a support online system at home.

Keywords: Hospitalized children, interactive games, long-term illness, cognitive enhancement, socioemotional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
8 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
7 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
6 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: Climate change, deforestation, gluing technology, joint failure, wood-glue, wood species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
5 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment

Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu

Abstract:

Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.

Keywords: Dissolvable magnesium, coating, plasma electrolytic oxide, sealer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
4 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
3 Assessment of Socio-Cultural Sustainability: A Comparative Analysis of Two Neighborhoods in Kolkata Metropolitan Area

Authors: Tanima Bhattacharya, Joy Sen

Abstract:

To transform a space into a better livable and sustainable zone, United Nations Summit in New York 2015, has decided upon 17 sustainable development goals (SDGs) that approach directly to achieve inclusive, people-centric, sustainable developments. Though sustainability has been majorly constructed by four pillars, namely, Ecological, Economic, Social and Cultural, but it is essentially reduced to economic and ecological consideration in the context of developing countries. Therefore, in most cases planning has reduced its ambit to concentrate around the tangible infrastructure, ignoring the fundamentals of socio-cultural heritage. With the accentuating hype of infrastructural augmentation, lack of emphasis of traditional concerns like ethnicity and social connection have further diluted the situation, disintegrating cultural continuity. As cultural continuity lacks its cohesion, it’s growing absence increasingly acts as a catalyst to degrade the heritage structures, spaces around and linking these structures, and the ability of stakeholders in identifying themselves rooted in that particular space. Hence, this paper will argue that sustainability depends on the people and their interaction with their surroundings, their culture and livelihood. The interaction between people and their surroundings strengthen community building and social interaction that abides by stakeholders reverting back to their roots. To assess the socio-cultural sustainability of the city of Kolkata, two study areas are selected, namely, an old settlement from the northern part of the city of Kolkata (KMA), imbued with social connection, age-old cultural and ethnic bonding and, another cluster of new high-rises coming up in the Newtown area having portions of planned city extension on the eastern side of the city itself. Whereas, Newtown prioritizes the surging post-industrial trends of economic aspiration and ecological aspects of urban sustainability; the former settlements of northern Kolkata still continue to represent the earliest community settlement of the British-colonial-cum native era and even the pre-colonial era, permeated with socio-cultural reciprocation. Thus, to compare and assess the inlayed organizational structure of both the spaces in the two cases, selected areas have been surveyed to portray their current imageability. The argument of this paper is structured in 5parts. First, an introduction of the idea has been forwarded, Secondly, a literature review has been conducted to ground the proposed ideas, Thirdly, methodology has been discussed and appropriate case study areas have been selected, Fourthly, surveys and analyses has been forwarded and lastly, the paper has arrived at a set of conclusions by suggesting a threefold development to create happy, healthy and sustainable community.

Keywords: Art innovation, current scenario assessment, heritage, imageability, socio-cultural sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
2 Investigation of New Method to Achieve Well Dispersed Multiwall Carbon Nanotubes Reinforced Al Matrix Composites

Authors: A.H.Javadi, Sh.Mirdamadi, M.A.Faghisani, S.Shakhesi

Abstract:

Nanostructured materials have attracted many researchers due to their outstanding mechanical and physical properties. For example, carbon nanotubes (CNTs) or carbon nanofibres (CNFs) are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The critical issues of CNT-reinforced MMCs include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. One of the major obstacles to the effective use of carbon nanotubes as reinforcements in metal matrix composites is their agglomeration and poor distribution/dispersion within the metallic matrix. In order to tap into the advantages of the properties of CNTs (or CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. Processing techniques used for synthesis of the composites have been studied with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. Modified mechanical alloying (ball milling) techniques have emerged as promising routes for the fabrication of carbon nanotube (CNT) reinforced metal matrix composites. In order to obtain a homogeneous product, good control of the milling process, in particular control of the ball movement, is essential. The control of the ball motion during the milling leads to a reduction in grinding energy and a more homogeneous product. Also, the critical inner diameter of the milling container at a particular rotational speed can be calculated. In the present work, we use conventional and modified mechanical alloying to generate a homogenous distribution of 2 wt. % CNT within Al powders. 99% purity Aluminium powder (Acros, 200mesh) was used along with two different types of multiwall carbon nanotube (MWCNTs) having different aspect ratios to produce Al-CNT composites. The composite powders were processed into bulk material by compaction, and sintering using a cylindrical compaction and tube furnace. Field Emission Scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Raman spectroscopy and Vickers macro hardness tester were used to evaluate CNT dispersion, powder morphology, CNT damage, phase analysis, mechanical properties and crystal size determination. Despite the success of ball milling in dispersing CNTs in Al powder, it is often accompanied with considerable strain hardening of the Al powder, which may have implications on the final properties of the composite. The results show that particle size and morphology vary with milling time. Also, by using the mixing process and sonication before mechanical alloying and modified ball mill, dispersion of the CNTs in Al matrix improves.

Keywords: multiwall carbon nanotube, Aluminum matrixcomposite, dispersion, mechanical alloying, sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
1 Empirical Study on Causes of Project Delays

Authors: Khan Farhan Rafat, Riaz Ahmed

Abstract:

Renowned offshore organizations are drifting towards collaborative exertion to win and implement international projects for business gains. However, devoid of financial constraints, with the availability of skilled professionals, and despite improved project management practices through state-of-the-art tools and techniques, project delays have become a norm these days. This situation calls for exploring the factor(s) affecting the bonding between project management performance and project success. In the context of the well-known 3M’s of project management (that is, manpower, machinery, and materials), machinery and materials are dependent upon manpower. Because the body of knowledge inveterate on the influence of national culture on men, hence, the realization of the impact on the link between project management performance and project success need to be investigated in detail to arrive at the possible cause(s) of project delays. This research initiative was, therefore, undertaken to fill the research gap. The unit of analysis for the proposed research excretion was the individuals who had worked on skyscraper construction projects. In reverent studies, project management is best described using construction examples. It is due to this reason that the project oriented city of Dubai was chosen to reconnoiter on causes of project delays. A structured questionnaire survey was disseminated online with the courtesy of the Project Management Institute local chapter to carry out the cross-sectional study. The Construction Industry Institute, Austin, of the United States of America along with 23 high-rise builders in Dubai were also contacted by email requesting for their contribution to the study and providing them with the online link to the survey questionnaire. The reliability of the instrument was warranted using Cronbach’s alpha coefficient of 0.70. The appropriateness of sampling adequacy and homogeneity in variance was ensured by keeping Kaiser–Meyer–Olkin (KMO) and Bartlett’s test of sphericity in the range ≥ 0.60 and < 0.05, respectively. Factor analysis was used to verify construct validity. During exploratory factor analysis, all items were loaded using a threshold of 0.4. Four hundred and seventeen respondents, including members from top management, project managers, and project staff, contributed to the study. The link between project management performance and project success was significant at 0.01 level (2-tailed), and 0.05 level (2-tailed) for Pearson’s correlation. Before initiating the moderator analysis test for linearity, multicollinearity, outliers, leverage points and influential cases, test for homoscedasticity and normality were carried out which are prerequisites for conducting moderator review. The moderator analysis, using a macro named PROCESS, was performed to verify the hypothesis that national culture has an influence on the said link. The empirical findings, when compared with Hofstede's results, showed high power distance as the cause of construction project delays in Dubai. The research outcome calls for the project sponsors and top management to reshape their project management strategy and allow for low power distance between management and project personnel for timely completion of projects.

Keywords: Causes of construction project delays, construction industry, construction management, power distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3120